—

FAGILITY FORM 602

Final Report

Contract NAS 8-11143

ADVANCE RESEARCH ON CONTROL SYSTEMS FOR THE
SATURN LAUNCH VEHICLE

Prepared for the
National Aeronautics and Space Administration
Marshall Space Flight Center

+3CRAT>

4/74u Q ZZé & SBE/

N()6—10639 GPO PRicg $
(ACCESStON NUMBER) N (THRU)
/,. ; ? CFsT) PR'CE(S) $

(NASA CR OR TMX OR AD NUMBER) {CATEGORY)
a

CONTROL RESEARCH ASSOCIATES
4321 HARTWICK ROAD
COLLEGE PARK. MARYLAND



e
s

e
" ADVANCED RESEARCH ON CONTROL SYSTEMS
‘\‘ FOR THE SATURN LAUNCH VEHICLE/;:>
by

D. C. Lewis
P. Mendelson

//;ginai’ﬁébort

January, 1964 - May, 1965

S

/

Prepared For:

. Geor all Fligh ‘
Huntsville, Alabama

Published:

May 31; 1965

o

by:

Ccontrol Research Associates
4321 Hartwick Road
College Park, Marxyland

it i Lt I

¢ e ey a1



ABSTRACT

Advance Research on Control Systems
for the Saturn Launch Vehicles /yéﬁ?

Presented are the results of Contract NAS8-11143 on
studies of a minimax problem in launch vehicle control.
This is the general problem of finding a control which
minimizes the maximum peak value of a selected index of
performance over a class of admissible disturbances while
satisfying a bounded state variable constraint. Under
this contract, some rigorous mathematical foundatlons were
established for the minimax problem. These include a
precise formulation of the problem and existence theorems
for solution of the problem. In connection with the
bounded state variable problem, a new concept called the
"core of the region of bounded state variables" is intro-
duced. This is roughly defined as the largest set of
initial conditions for which solution trajectories remain
inside the bounded set of state variables under any admis-
sible disturbance. Existence and unigueness of the core
of a region are discussed, and for some sample second and

third order problems, the core is computed. /éQL)/



PREFACE

During the period from March, 1963 through December, 1963 a program
of research relating to the synthesis of optimal control techniques
for the saturn launch vehicle was carried out. This work was done
under Contract NAS 8-5002. The scope of this work comprised three
specific areas of endeavor:

(a) time optimal control
(b) time optimal control with constraints
(c) certain minimax problems in control theory

All intended areas of Part (a) were covered. This included a search
for the control law in closed form for the fourth order linear control
system (single control element) having two zero eigenvalves and two
real and equal but oppositely signed non-zero eigenvalves.

Substantial results relative to Part (b) were obtained. The out-
come of this preliminary work indicated that useful results could
probably be obtained through further research. The formulation of
the minimax problem of Part (c) as well some preliminary qualitative
results in that area were obtained.

The work of this contract (NAS 8-11143) is a direct follow-on to
the work on Contract NAS 8-5002. The main emphasis herein is centered
on the minimax problem.

At the outset of this project it was decided that rather than sub-
mit informal progress reports with a single detailed report at the end,
CRA would prepare detailed progress reports each month with the intent
that each of these reports would be used as a chapter in the final
report. This approach to the documentation of our work has been fol-
lowed. The main advantage of this method is that it provides NASA
with monthly reports which explain exactly and in detail the nature
and direction of our progress. Hence, the technical officer is better
able to direct the efforts of the contractor towards the desired NASA
goal and also NASA personnel are able to digest our results continuously
rather than be burdened with the necessity of having to read one large
weighty report after the contract is over to learn the results of our
work. The main disadvantage to this approach is that some of the material
in later chapters supercedes certain material in the early chapters. The
reader is urged to refer to the Appendix of Notes and Errata in order to
overcome this difficulty.
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CHAPTER 1



1. Introduction: Rough Statement of the Minimax Problem In Control Theory

Consider the system

S: % = f(x, w, u), (1.1)

where x is an n-vector representing the system's state, X represents dif-

£ 1is an n-vector function of (x, w, u),

v

u(’c) are n-vector functions to be more properly

ferentiation with respect to time 1,

while w =w(t) and u=

desceribed below. The function f 1is given. The vector w = w(t) is

restricted to a certain class W of allowable “yinds", while u = u(t),

the control vector, is restricted to & given class U of admissible controls.

The system S is viewed as being subject to various disturbances

(winds) belonging to the given class W. Tt is controlled through the

imposition of controls belonging to the given class U. It is assumed

hereby that the classes U and W are such that it is always possible

to control the system so that its deviation from the desired state is in

any case bounded by preassigned bounds, say, through inequalities of the
form

x| < 8y 121, veee, 1, (1.2)

where Biseces a are given positive constants. This assumption may be
formulated more generally by the statement that a proper choice of control
exists so that x(t)eR for all t in some intervel (say, 0< t < T),

where R is a preassigned set in the space of x.

~1-1-



During the course of its controlled motion the system may recede from
its desired state, or some function F(xl,... ,xn) may grow unconfortably
large. The minimax problem may be described briefly as the problem of

jdentifying the control (or controls) such that the maximum deviation

of the system (or of F), throughout its motion, from its desired state

shall be & minimum, In the event that |F| is our criteriom, the con-

straints embodied in (1.2) must still be satisfied.
Tt must be apparent to the reader that the question posed above is

hopelessly general and hopelessly vague. Our first task will be to attempt

a precise formulation of a more tractable problem.

—1-2-
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2. Non-Topologicel Aspects of Minimax Problems

We consider two spaces X and Y and a mapping of the cartesian

product space XxY into a bounded set S of the real numbers. Thus,

with xeX and yeY, F(x, y)eS. Since S is bounded,

L.u.b.
x| F(x y) = 00)

exists for all yey,
and

&P Bx y) = ¥x)

exists for all xeX. Moreover ¢(y)eS for all yeY end y(x)e8

for all xeX, where §, Ybeing the closure of a bounded set S of

real numbers, is itself bounded. Hence, there exist real numbers A

and BeS, such that

.1.D.
Sy ely) = A

1l.u.b. _
xeX ¥(x) = B

Then without introducing any topology at all into the spaces

we are able to prove the following theorem

Theorem 2,1 A 2 B, that is

g.1l.b. l.u.b. l.u.Db. g.1l.b. ]
{ F(x) y) 2 xeX yeY F(x, y) .

yeY xeX

-1-3-
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(2.3)
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Proof.

Iet ¢ be any positive number. Then since B-e ig not an
upper bound for ¥(x) for all x in X even though B 1is an upper

bound (in accordance with (2.4)), there must exist x eX such that
B-e < ﬂ/(xo)
By (2.2), for 2ll yeY,

Vx,) = Flx,, ¥)
which by (2.1) does not exceed o(y). Hence, we see from (2.5) and
(2.6) that

B-¢ = 9(y)

for all yeY.
Similarly from (2.3), we see that there exists yeY 3

o(y) <A +e

Hence, from (2.7) and (2.8), on taking y = ¥ in (2.7), we find that

B-c < A+ ¢

Since this is true for every positive number €, we conclude, by
allowing ¢ to approach O, that B = A, as we wished to prove.
In the special case where the verious functions mentioned above

take on their greatest lower and thelr least upper bounds the sense

of Theorem 2.1 is to the effect that

max max nin
F(x, y) | 2 F(x, ¥)
yeY xeX xeX yeY

min

-1-4-
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—_————— ——

It is not, in general, possible to prove that the sign z in
Theorem 2.1 (or, even in the more speciel case (2.9)) can be replaced
by the sign =. For example, suppose that X and Y contain only two

elements O and 1 and let

F(0, 1) = 0, F(1, 1)=1

F(0, 0) =1, F(1, 0)=0

then we see at once that ¢(0) = ¢(1) =1 while ¥(0) = ¥(1) = O.
Hence A = min 9(y) =1 and B = max ¥(x) = 0, so that we have here
A > B.

Nevertheless there exist familiar cases in which A = B, For
instance, if F(x, y) = y2 - x° where -1s X, y £ +1. Here we have
v(x) = -xe, o(y) = y2, so that A = B = 0. This might suggest to the
beginner that when F(x, y) is an analytic function of the two real
variables x and y we might expect to have A = B. That even this

need not be the case is easily shown by the following example:
2
Flx, y) = 1 - (x-y) 0sx,ysl

2x-x2 if 0sxs1/2

min
v F(X, y) = W(X) = 2
1-x- if 1/2sxs1

PE R, y) =o(y) =1

]
o)

min ¢(y) = A = 1, max ¥(x) = 3/k

so that A > B.

-1-5-
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A further investigation of the question of when A =B leads
to Theorems 2.2 and 2.3, which are slight generalizations of corres-

ponding theorems of Von Neumsanu. We first, however, introduce the

following definition

DEFINITION: Let n be any positive number., A point (xo, yo) eXxY is

said to below to an 7-saddle set STfXxY if

l.u.b.
ey B(x, v,) s Flx, v) (2.10)
and
g.1l.b.
Fx, ¥,) - n % F(xy, ¥) (2.11)
yeY

Theorem 2.2 If for every 1 >0, Sﬂ is not empty, then A = B. Moreover,

for every n >0, and for every point (xo, yo) € ST]’

lA - F(Xo: yo) I <n

Proof Let (xo, yo) € STI so that (2.10) and (2.11) are valid. From (2.1)

(2.2), (2.3), and (2.4), we write the alternative definitions of A and

B
g.1l.b. l.u.b.
A= F(x,¥) (2.12)
yeY xeX
1l.u.b. g.1l.b.
B = F(x,y) (2.13)
xeX ye¥
g.1l.b.

From (2.13) B2 F(xo, y). Hence, from (2.11), we have

yeY

Bz F(x, yo) -1 (2.14)

-1-6-



From (2.12) A s L.u.b. F(x, yo). Hence, from (2.10), we have

xeX
< +
A s F(xo, yo) 1 (2.15)
Hence, from (2.14) and (2.15) we see that A s B + 27. Since this
is true for every positive number 1, it follows that A = B. But,
by Theorem 2.1, it is already known that A 2 B. Hence, A = B, Hence
(2.14) cen be rewritten
,
Az F(xo, yo) -1 (2.16)
The last assertion of the theorem then follows at once from (2.15)
and (2.16).
Theorem 2.3 Conversely, let A =B and let 71 be any positive number;
then the set Sn is not empty.
Proof Iet ¢ = (1/2)y ILet x, be any point in X such that
B-¢ < \lr(xo) £ B (2.17)
and let Y, be any point in Y such that
A s cp(yo) <A +e
Since we are assuming that A = B, we can write this last formule as
(2.18)

B s @(yo) <B+e

Evidently then, from (2.18), i‘e‘;'b’ F(x, yo) = CP(yo) < B + €, which

from (2.17) is less than

.1.b.
¥(xy) * 2e = 2y Flxg, ¥) 4

P
!



sO that

l.u.b.

.1.b. ‘
oy & Flx, ¥) + (2.19)

F(X, yo) < er

Hence, for every x € X,

l.u.b. .1l.b.
F(X: yo) < & : F(Xo, Y) +n = F(xo, yo) + 1

F(x, yo) = xeX yeY
It follows that L.u.b. Plx, v )sF(x, vy ) +n (2.20)
xeX 2 Yol T o Yo ‘

Going back to (2.19), we also see that, for every y ey,

- g.1.b. 1l.u.b.
F(XO: y)z yeY F(Xo’ y) > xeX F(x’ yo) -ne F(xo, yo) -1
.1.b.
Tt follows that ;‘er F(x, ¥) 2 F(x,, v,) - m (2.21)
From (2.10), (2.11), (2.20), and (2.21), it is now seen that (xo, yo)
€ S'fl’ which establishes the theorem.
Our next result is somewhat more transparent.
l.u.b. {l.u.b, _ l.u.D. 1.u.b.
Theorem 2.4 ey E{ex F(x, y)] = LeX [er F(x, yﬂ
l.u.b.
(x,7) € Xxx FO& ¥)
with a similar result on replecing l.u.b. by &. 1.b.
1l.u.b. _
Proof Let iy F(x, y) = NMx) (2.22)
l.u.b, _
x| Mx) = M (2.23)
(2.24)

. .b.
LD B(x, y) = oly)

-1-8-



ey T oly) =N (2.25)

l.u.b. _ ' -
Py o B W) =B (2.25)

From the boundedness of the set S into which F maps XxY, it is
obvious, as above, that all these least upper bounds exist. We wish
to prove that M = N = P. From (2.23), we have AMx) s M for all
xeX and from (2.22) we have F(x, y) s A(x) for all xeX and all
yeY. Henmce F(x, y) s M for all (x, y) ¢ Xx¥. Hence P s M

On the other hand, if € is any positive number, we see from
(2.23) that there exists & point x_eX such that M- s Mxo)'
Keeping fixed this point x_, we see from (2.22) that there exlsts
a point y €Y such that Mxo) -¢ s F(xo, yo). Hence we find that
M-2¢ s x(xo) - € s F(xo, yo) £ P. Thus M-2e¢ s P for every positive
number e¢. Hence M s P, which, combined with the result P =z M obtained
above, shows that M = P.

Using (2.24) and (2.25) as we used (2.22) and (2.23), it is also
easy to prove that N = P. Hence M=N=P as we wished to prove.

The minimax problem is said to have a solution if there exists

points xoeX, and yoeY, such that

min max
F(xo’ yo) T yeY xeX F(x, yil

Tt will be proved later that the minimex problem always has & solution
if X end Y are sequentially compact spaces, if F(x, y) is upper
semicontinuous in its dependence on x, and if ¢(y) is lower
semicontinuous in y. It will also appear tﬁat both these conditions

involving semi-continuity are automaticelly satisfied if F(x, y) is

continuous in XExY.
-1-9-



From a practical standpoint, however, one might well question

the usefulness of this result. For even without assuming any

topological properties of X and Y, the following theorem makes

it obvious that there always exist approximate solutions in a quite
satisfactory sense.

£ g-1.b. l.u.b. F(x, y) =A in accordance with

Theoren 2.5 Le yeY <€X

the notation used in Theorem 2.1 Iet € be an arbitrary positive

pumber. Then there exist points xoeX and yoeY such that

F(x,, yo) -A <e¢

l.u.b.

Proof: As previously, we let o(y) = xeX F(x, y) so that (2.3)

nolds. Since A is thus a lower bound for ¢ but A + €, is not, we

see that there exist Yy €Y such that A = cp(yo) <A+ e
With this ¥, fixed, there exists x_ = such that cp(yo) -e<
F(xo, yo) < cp(yo). Hence A - € £ cp(yo) -e< F(xo, yo) < cp(yo) <A+ e

Hence we have A - € < F(xo, yo) <A +e for the x  andy, chosen

in the way indicated.

3, Sufficient Condition for the Existence of a Solution of a Minimax

Problem.

In the previous section we promised to prove & theorem on

the existence of & solution to the minimax problem
min max
yeY xeX Fx, y_z-}

-1 -10-



That is, we wish to prove the existence of a point xoeX and

a point y €Y, such that
0 J

_ min . } max
F(Xo: yo) = yey xeX F(X, Y)]

The hypotheses on which our proof is based are as follows:

le F 1is bounded on the product space XxY

H2: Both X and Y are not only topological spaces, but are
also sequentially compact.

H3: F(x, y) is upper semi-continuous in its dependence on X.
This means that ia-;xlisup F(x, y) s F(x, y) for every
xeX.

max . . s s

H,: o(y) = xeX F(x, y), the existence of which is insured by
H3’ is lower semi-continuous, This means that
1im inf - =

P = for eve €Y.
Yoy ¥ o(y) z oF) ry ¥
Notice that the hypothesis H refers to a function @(y) whose

existence must first be established from the other hypotheses. This

is done as follows:
We must prove that F(x, y) for each fixed y must teke on

a maximum value. Since F(x, y) is bounded and since every bounded

set of real numbers has a least upper bound, it makes sense to let

cU.b.
q)(Y) = ;LCE}U(. F(X, y);

and we now have only to prove that there exists a point x* = x* (y) X

such that

o(y) = F(=* , ¥)-
-1-11-



Since o(y) - % is not an upper bound there will exist at least

one point xneX such that

1

Fx, ¥) >oy) - 3 (3.1)
We may also restrict attention to the case where F(xn, y) # o(y),
for each n; for otherwise we could take ¥ to be equal to an X,
for which this condition is not Pulfilled. Since X 1s sequentially
compact the sequence X,, Xp) xa,....., hes at least one convergent sub-
sequence, say, X X, X This means that there exists ¥ eX

D, "By Dzyees

such that

lim

x =x%*

Ky o nk
From (3.1) we also have F(xnk, y) > o(y) - l/nk. This shows that
Lin inf F(x. , y) 2 o(y). On the other hand from Hypothesis H_, we
kvp nk 3
have 1im sup * lin inf -

X F(Xnk" y) s F(x¥, y). Hence o(y) = 5 o0 F(xnk,; y) =
E‘_I; iup Flx. ,¥) s F(x*, y), so that o(y) = F(x* ,y). But we also
know that o(y) z F(x* , y) since ¢(y) is an upper bound for F(x,¥).
Hence it is clear that o(y) = F(x*% ), as we wished to prove.
We next need to prove that there exists a point yoeY where
o(y) takes on a minimum. Iet A = ?;é'b' o(y). We can then find &
sequence of points in Y, say ¥y, Yo y3,.... such that
(3.2)

| 1
o(y,) < K+ 3

- 1,12;



and we can limit ourselves to the non-trivial case where

cp(yn) #A for say n. Otherwise we could take ¥ equal to

a vy, for which this condition is not fulfilled. Since Y 1is
sequentially compact, the sequence Yy Yo y3,.... has at least
one convergent subsequence, say, V. Vo9 Ypooeee This means

2
ny” oy h3
that there exists a point Yo in Y such that

1im y -
k> « n yo

From (3.2) we also have q)(ynk) <A+ l/nk. This shows that

lim sup o(y. ) s A On the other hand from Hypothesis H , we have
kP o« n, 4
lim inf

lim inf
oy, )= ¢y ). Hemce o(y)) = "y, <P(ynk) s A,

k> o nk s? that

cp(yo) < A. But we also know that q>(yo) 2z A, since A is a lower

L] .b.
bound for o(y), Hence CP(YO) = A = 5.6:]:, o(y).

Thus we are justified in writing for the Yo thus found

min min max
or) = T2 o) < M2 [ sr, 3]
But we have already proved sbove that there exists X, = x* (yo)
such that
F(x,, v,) = o(v,)
Thus, from (3.3) and (3.4), we see that there exists x eX and

yoeY such that

_ min max
F(xg ¥5) = yey | xex T y)] ’

thus completing the proof of the theorem.

-1-13
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We summasrize the existence theorem just proved as follows:

Theorem 3.1 If F(x, y) satisfies hypotheses H), H,, Hy, and H, given

above, there exists a point (xo, y6) €XxY, such that

fxy v = E2 2 ny)] (5.5)

We next want to show that hypotheses H3 and HLL can be replaced
by the single hypothésis to the effect thet F(x, y) is merely continuous

on XxY, at least provided that X and Y are metric spaces as well as

being sequentially compact. Thus the semicontinuity requirements of H3 and

Hl+ are conceived of as being perhaps unnecessarily general. The main facts

are more exactly formulated below in Theorem 3,2, Before proceeding to this

theorem, we cite the following lemma:

IEMMA. Iet G be & continuous mapping of a metric sequentially compact space

= onto a metric space ;/L . The distance between two points ¢ and ¢E'e

-
———

¢ = 1is denoted by |e,£'| and the distance between two points w, w' € J?)

is denoted by |, ©'l|. Then, corresponding to every positive number ¢, there

can be found a positive number & = Be, such that

lla(e),c(e?)| < e as longas & e = , &' = and |t, t'] <B.

Although this lemma is probably well known, we submit the following

proof. For the reader may not be acquainted with the theory of uniform

continuity in the generality here formlated.

-1-14-



If the lemms were false there would be some positive number € such

+nat no matter how smell & is taken, say © = 1/nm, it would be possible

to find two points, say gn and g'n such that

le, &',1 <1/n (3.6)

while at the same time
laCe,), a(er Il 2 « (3.7)

Since "= is sequentially compact, the sequence gl, §2, 53,... has

at least one convergent subsequence £, gn 5 gn 5.+« We therefore write
n)t my hg

koo to 8 (5.8)
From (3.6) we thus have Ignk, g’nkl < l/nk, so that we also have
Mmoo =gt (3.9)

k=« o,
From (3.7) we have ||G(§nk), G(g'nk‘)n > e. Hence, on letting k-> =,

we find on using the assumed continuity of G that la(e*), G(e *) z e

But this is absurd since the distance of any point from itself is always

zero. Thus the assumption that the lemma is false leads to a contradiction.

The lemme has therefore been proved.

y) be continuous in the produce space XxY¥, where

Theorem 3.2 Let F(x,
max
cex F(&Y)-

X and Y are sequentially compact metric spaces. et o(y) =

Then ¢ is a continuous function of yeY.
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max

<eX F(x, y) is an obvious consequence

Proof. Of course the existence of

of the continuity of F(x, y) in x(with y fixed), since X 1s sequentially

compact,

Since both X and Y are sequentially compact, the same is true of
the product space. Hence we may use our lemma with = = XxY, G(¢) = F(x, y)-
This means that if >0 is preassigned we may choose ® din such a manner

that

|F(x,y) - F(x', y')| <e as longeas x, x', €X, 7, y' € ¥,
lx, x'| <& end |y, y'| < 8.
Here, of course, we use Ix, x'| to represent the distance between x and x',
ly, ¥'| the distance between y and ¥y, while |g, '] = mex (|x, x'[, lv,¥!)

is the distance between points (x,y) = ¢ and (x',y') = £' in the product

space.

Now let y' be arbitrary and choose x' 8O that o(y') = F(x', y*').
This is possible, since F(x,y') for fixed y' assumes its maximum for some

value x' of x. Then
F(x', v') - < F(x,y) if |x,x'| end |y,y'| are both less than .

Since F(x,y) 's o(y) by definition of ¢(y) end since F(x',y') = o(y") we

have

oy') - e s oy)

for every pair (y,y') such that ly,y'| < & and vy, y' €Y.

Reversing the roles of ¥ and y' we also have

o(y) - es o(y')
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under the same conditions. Hence

lo(y) - o(y*)| < e

as long as |y y'| < ®. This completes the proof of the theorem.
It is worth noting that while z; F(x, y) is thus a continuous
function of y, the point x = x(y) where F(x, y) assumes its maximum

may be a quite discontinuous function of y. Thus it F(x, y) = xy where

X and Y are the closed intervals [-l, +1] , we have o(y) = |y| which
is continuous, but x(y) = +1 for y >0, x(y)=-1 for y <O, and x(0)
is multiple valued.

W close this section by replacing the hypotheses Hl’ HE’HB’ HL; in
Theorem 3.1 by hypotheses to the effect that F 1is merely continuous and
that X and Y are sequentially compact metric spaces. This 1is justified
by Theorem 3.2, However, in order to have a formulation involving a max-min
rather than a min-max, we shall replace F by -G, The final theorem then
reads as follows: .

Theorem 3.3 If G(x,y) is a real valued function defined for xeX,
yveY; if X and Y eare sequentially compact metric spaces, and if G 1is
continuous at every point of the product space XXV, then there exists

. _ max min
a point (xo,yo)eXxY such that F(xo,yo) al T — c(x,y)
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. Some Remarks on Function Spaces

The present section enumerates various definitions and results used
in the sequel. No attempt is made to state the most general definitions
or the most general results. For further detail the reader is referred
to the literature (e.g. Kelley, General Topology ).

Tet R designate the field of real nunbers and let X be a vector

space over R. We say that X is normed if there exists a real valued

function |jx]| on X having the following propertles:
(1) lx] > 0; x|l =0 if and only if x = 0
(11)  Jlox| = |ofllx[] for all @eR and all xeX (k.1)

(1i1) lxtyll < lxll + [yl for all x,yeX

Every normed space is a metric space. In fact, if x and y are

any two points in X, we define the distance from x to Yy, written

. It is well known

a(x, y), to be the non-negative real number llx=y
that d(x,y) satisfies all the requisite axioms of a metric. The topology

of X may now be defined in terms of a(x,y). Specifically, & spherical

neighborhood of a point xeX is the set of a1l points yeX such that

a(x,y) <r, r>0; a sequence {xhk in X is said to converge to a point

xeX if d(xn, x)> 0 as n?+ o

A topological space X 1s said to be sequentially compact if every
sequence in X has & convergent subsequence. The cartesian product of

a finite collection of sequentially compact spaces is sequentially compact.
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Tet Y be a real normed vector space and let X Dbe sequentially
compact. Iet f: x-» Y be continuous. Then it is well known that
|£(x)|| attains both its maximum and minimum values in X.

Tet C(X, Y) denote the family of all continuous functions f: X< Y.

: c(%Y)> R

¢(X,Y) is a real vector space. Moreover, the function I

defined by

el = ™ et (.2)

is well-defined and furnishes a norm in C(X,Y). The topology induced

on C(X,Y) be this narm is called the uniform topology. If £, f in

the uniform topology, we say that fn cohverges ﬁniformll to f.

Tn the special case when Y =R, one has

mex e
el = = (el
where | | denotes the femiliar “absolute value", Still assuming Y =R,

we have: f - £ if and only if an - £ 0 or, equivalently, if and only
if

ﬁ lfn(x)-f(x)|-> 0 as n> + o

Iet a and b be real numbers, with a <b. Iet E" denote
the nm - dimensional Euclidean space. EY is a normed real vector space.
Hence, in accordance with the preceding paragraph, C([a,bj , E%) 1is also
e real normed vector space. In order to simplify our notation we shall write'

¢(a, b; m) for c([a,v] ,Em).
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Let K be a subset of C(a, b; m). Then K is said to be

uniformly bounded if there exists a number M > O such that

I£l = M for all feK.

K 1is said to be wniformly continuous if given any € > 0 there

exists a © = 8(¢) such that |x-y| <& implies [|£(x)-£(y)| <e for
all Xx,Yye [a,'b] and all feK.

Tn the sequel we shall make use of the following famous theoremn.

Theorem (ASCOLI) Iet K be a uniformly bounded and uniformly continuous
subset of C(a, b; m). Then K is sequentially compact (in the wniform
topology ).

Otherwise stated, the theorem says that a family K of functions
f: [a,b] 5E°, which is (1) uniformly bounded, and (2) uniformly continuous,
has the property that any sequence in it contains a (uniformly) convergent

subsequence.,
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5., Precise Formulation of A Minimax Problem In Control Theory

Iet X be the space of x and let R be a closed bounded region

in X which contains the origin. For the sake of definiteness the reader

may take R to be the set
R = {xl ] = 8, 1=1 .., n?s, (5.2)

where a; are preassigned bounds (ef. § 1). However, other sets R may

be of interest in the future.

We shall say that the system S is T - tame with respect to R 1if

given the positive number T +there exists a subregion RT cR such that for

any xoeRT and any weW there exists a control ueU such that

x(t, x, © w)eR for all O st = T. We assume hereby that x(0, x_, @ u) = x_.

Iet R eand T be fixed (given) and assume that S 1is T-tame with

respect to R.

Iet xoeR . ILet

T
glx,0,0) = porgn I(Ex 00l (5.3)
B(x o) = 85 elx o) (5.1)
nlx,) = o Blxg,0) (5.5)

We shall show that the functions g, h and m are well-defined.

(1) g is well defined. This is so because x(t,xoa),u) is continuous

in t, whence |jx(t)|| attains its meximum over the interval [O, t].

-1-21-



(2) b is well defined. S is T-tame, hence given x €Rn and

weW there exists at least one u €U such that x(t,xo,w,u* JeR for all
te E),T] . R is bounded, hence there exists an r >0 such that R

is contained in a sphere of radius r with center at the origin, Hence
g(xo,a),u* ) s .

Hence, h (xo, w) £ T.

(3) m is well defined., We have h(xo,w) £ r for all weW, hence

l.u.b.

T h(xo,w) s,

hence m(xo) is well defined.

We are now in a position to give the first precise formulation of a

minimax problenm:

(1) For a given x eR;, find m(xo).

(2) Determine whether there exists a u* in U such that

l.u.b. max
m(x,) = ey ooty (b x0u* )l

(3) Determine whether u* is unique.

(4) Determine whether there exists & ® *in W such that

m(x ) = max
(o] Ost=T

”X(t;xoawt u* )

Ttem (4) is of lesser importance than items (1) - (3).
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6. Existence of Solutions To The Minimex Problem In Control Theory

Consider the system

(6.1)

S: % = f£(x,wu)

where x, f, wand u are as described in § 1. We assume that f satisfies

a Lipschitz condition in , u, namely that

. (6.2)

£ (rysyn) = 2y, u)ll 8 oy oyl + ey fumuy

Tt is well known that these assumptions are sufficient to assure the

existence and uniqueness of solutions for S.
Theorem 6.1 If U and W are sequentially compact and S is
T-tame then there exists a solution for the minimax problem for S. In

other words, given X €Rp there exist u*eU and o¥eW such that

max

m(xo) = Oé'téT ”X(t)xo,w*) u*)”’

Proof. The solution to system (6.1) is given by

_ t
x(t,xo,o.),u) =x_ * fo £(x(1), o(t), u(r)) dr (6.3)
Let xo be fixed. We shall show that the mapping

us WxU-)[O, + o) (6.1)

defined by
(6.5)

wleyn) = Blx 0,0

is continuous.
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One has
t
x(t,xo,w,u) =x +fo f(x(7), o(t), u(r)) ar

0

t
x(t,xo,w”zu') =x ¥ fo £(x(1),w'(7), u'(t)) d7,

whence
t
x(t,xo,w,u) = x(t,xo,w‘,u') =fo [f(x,a),u) - f(x,w',u‘)] at
S0
“X(ﬁyxo;w;u) - X(t;xo:w,:u')“ =

| f(x,a),u) - f(x:w’:u')“ dt
foy ol + e fu-u'l} ax

= M ([lo-ot]] + fu-ut{l),

where M = max (clT, CQT)’ and t is any number in the interval [Q,T] .
It follows that
6 porn) - 8Gigpotyu)] s Moot + a-u’])

whence u is continuouse.

Theorem 6.1 now follows as an immediate consequence of Theorem 3.3.

The proof is complete,
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Corollary 1. In the case of a linear system
S : %X =Ax+Bu+taw
where A and B are nxn constant matrics and c¢ i1s a constant

n-vector, the Lipschitz condition (6.2) is satisfied and hence Theorem 6.1

applies,

Corollary 2. Tet S be as in Theorem 6.1, Let U and V be uniformly

bounded and uniformly continuous subsets of C(0, T; n) and C(0, T; 1),
respectively. Then the conclusion of Theorem 6.1 holds.

Proof. Theorem 6.1 together with Ascolifs theorem.
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CHAPTER 2



I. Alternative Formulations Of The First Minimax Problem In Control Theory

In § 5 Bf our Second Progress Report we formulated our first minimex problem
in control theory. This formulation involved a set ‘R defined by inequalities of

., 1i=1,..., n, where the ai!s were given real constants.

the form - |x.| s a
i i

We repeat this formulation here except that fhe sgt R of our SeCQnd'Progress Report
is here replaced by & sphere R of given radius r with centervat»the\orig;n. The
reason for this change is that the parallelopiped set R -of our Second PTogfess Report
entails certain non-trivial difficulties which are avoided in the event tﬁat R is a
sphere.> The nature of these difficulties will be brought out in our next progress
report. Suffice it to say that the following discussion is.étrictly limited to the
case when R is a sphere and that changing R into a parallelopiped (or some other
bounded set) would require non-trivial modifications.

Consider then the system
81 % = £(x,w,u) (1.1)
and the (given) set

R ,—:\ {X] ||x|| £ r} . (l‘.g)

Assume that S is T-tame with respect to R (ef. Second Progress Report, p. 21).

‘Let x_eRp (loc. cit.). Define
g(xo,w,u) = Ionzst “x(tho:w)u)H (1'3)
n(x_w) = &0 glx ) (1.1)
o’ uel 27
_ l.ube
m(x) = 180 n(x ,w) | (1.5)
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We have shown (loc. cit., pp. 21-22) that g, h and m are well-defined. Our first

minimax pr

oblem consists of the following questions;

(1) ‘For a given x _€Rp, find m(xo).

(2) Determine whether there exists a wu¥eU such that

(3)
(&)

For the sake of Amtuititvec clarity, we now allow ourselves a certain looseness

of speech

problem of determining m(xo) is then the problem of finding

where g(xo,w,u) is as defined in (1.3). Therefore, strictly speaking, our first
minimax probiem was not really & min-max problem bt e max-min problem.
reversal of the order of min and max is forced in the sense that a $imple minded

attempt to interchange the min and max in (1.6) must of necessity lead to a

meaningle

. In fact, let g(xd,w,u) be as defined in (1.3) and let

m(x ) - l.u.b. max
[o) wewWw 0stsT

le(t,xo,w,u*) .
Determine whether u¥ 1is unigque.

Determine whether there éxists a w¥eW such that

max

m(xo) = O§t§T ”x(t’xo)w*)u*)”

and replace g.l.b. and l.u.b. by min and max, respectively. The

max min

WeW  ueU g(xo,w,u),

ss problem.

_ l.u.b.
k(xo:u) = wee W S(XO,W-,U.)
- . g.l.b.
m(%o) T uelU k(xo,u).

—2m2 -
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Speaking loosely again,

I-I-I(X) - min max g(x Ww U)
° uel  weW o’?

'so that ﬁ(xo) corresponds to the interchange of the order of min and max in

1.6).

| Let xogRT be fixed. A choice of weW and ueU gives rise to a unique
trajectory x(t,xo,w,u) passing through x = &t time t = 0. The function
g(xo,w,u) gives the maxinum value attained by Hx(t,xo,w,u)H along the arc of
this trajectory corresponding to the time interval O0stsT . DNow, it has been
assumed that S is T-tame. Hehce given any weW there exists a u"='u(v)eU
such that x(t,xo,w,u’)eR for all OstsT. This, however, does not preclude the
possibility that given a ueU there exists a wi’eW such that x(t,xo,w',u)
strays out of R during the time intervel O0stsT. As & matter of fact, it
appears necessary to assume this very possibility, namely that for any initial
point. xoeRT and any fixed control ueU there must always exist a "bad»enough”
wind weW which drives the system out of the set 'R during the time interval
0stsT. Otherwise, there would exist at least one initial peoint X, and one
control function ﬁ = ﬁ(xo)eU such that x(t,xo,w,ﬁOeR for all 0stsT and
all weW. BSince 0 is completely independent of w, the existence of such a
contfol would be nothing short of a panacea. It would be a control which is
fixedxthroughqut the motion, unresponsive to any winds encountered in flight
(being, as it is% solely dependent on the initial point X, and nothing elseD
and yet sufficient to assure the safety of the system (by keeping it neatly
tucked within the set R) against all winds! If we assume that the class
W is neither empty nor otherwise trivial (for example, it is naturai to
require that if weW then xwew for all real A satisfying -1sxsl)

then the existence of U, perhaps even for one particular point X s would

-2=3-
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rule out most systems S of practical significance. The only type of system
S which is likely to remain would be so inherently stable relative to the whole
class W, or the constant T so small or R so large that the safety of S
was never jeopardized in the first place.

- At any rate, it.is not truly necessary at this point to decide whether

the existence of ﬁ(xo) mist be ruled out at every single point of Roe

 Suffice it to say that it must be ruled out in a substantial part of RT'

We assume hereby that the initial point X, under consideration is one for

which no u (xo) exists within the class U. This, in tdrn, meédns that given

any ueU there exists a weW such that x(t',xo,w,u) £ R for some

tte [0,T]-
It follows that

k(xo,u)u> r for all ueU,

whence

m (xo) > r.

The number ﬁ(xo) does not measure what we set out to obtain, namely the
"least possible deviation attainable (starting at xo) under the most adverse

circumstances™. -This is so due to the unfortunate definition (1.7)-(1.8) in

which the natural order of things is reversed. Thus (1.4) measures the best

possible defense against a given wind (control follows perturbation), whereupon

(1.5) determines the least success of this procedure. On the other hand, (1.7)

measures the worst possible performance (i.e. failure!) of a given control

(control precedes wind), whereupon (1.8) measures the least.possible such

failure. Equation (1.10) simply stetes that the least of all failures is

itself a failure.
_2_45
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Nevertheless, there is a way to formulate our first problem as a true

min-max problem except that this formulation requires a more subtle approach

than that embodied in (1.7) - (1.8). We proceed in two steps: First we show '

that the max-min m(xo) defined by (1.4) - (1.5) in WxH may be replaced by
an equivalent max-min m’(xo) defined by (1.12) in a new cross product set

WXH (Theorem 1.1). Next we show that ’m’(xo) equals the min-max v(xo)

(ef. (1.13))which is also defined in WxH (Theorem 1.2). This establishes

what we set out to accomplish.

Let H = H(W,U) be the set of all functions h which map the set of

winds W into the set of controls U. In symbols

{hmzwéug

H(W,U)

Let’

l.u.b. g.l.be
1
m'(x)) = Jew nem

g(xo,w,h(w)),
where g is as defined in (1.3).
Theorem 1.1 m'(xo) = m(xo)

.Proof. For every ueU let hueH be that element of "H whose range

is  {u}; thus
hu(w) =u for all weW.
Let w'eW be fixed. Then

(h(w') | heH} D (b (v')] uel} = U.
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On the other hand, one has trivially
(h(w')| neH}CU,

whence
In(w')| ner} =

Since w' is arbitrary it follows that

{h(w)|heH, w fixed] = U for every weW.

il

Therefore

g.1l.b.

.l.b.
h € H g(xo}w)h(w))

ey g<xo)w;u))

whence
m'(x_) = m(x),

and the proof is complete.

Let

g.l.b. l.u.b.
v(x ) = & S0 g(x_w,n(w)

Theorem 1.2. v(xo) = m’(xo).

Proof. We note first (cf. Second Progress Report, p. 3, Theorem 2,1)

that

. - l.u.b.
h W g(xoyw;h(w)) >4 W

—2=f=

g.1l.b.
h

g(xo)w)h(w))’

(1.13)



whence
T
v(x ) pmt(x)

We shall now show that v(xo) < m*(xo).

Iet €0 be fixed. For every w, choose & ue(w) such that

.l.b.
g(xo,w,ue(w)) < & u g(xo,w,u) + €

Let he' W > U be the element of H defined by

¢

he(w) = ue(w) for every WweW.
Then, by (1.15) and (1.16), we get

l.u.b.

l.u.b. g.l.b.
W u

g(XO,W,he(W)) < W

S0

l.u.be.
w g(xo,W,he (W)) < m(xo) + €

On the other hand, it is easy to see that

1l.u.b.
A\

cgel.b. loulb.
: s g(x b (1))-

. g(xw,n(0) <

Heuce, by (1.13), (1.18) end (1.19), we get
v(xo) < m(xo) + €
But € is arbitrary, so

v(x ) € mlx,) = w'(x,)

g(xo,w,u) + €

(1.1k)

(1;15>

(1.16)

(1.17)

(1.18)

(1.19)
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H = m
ence v(xo) m (xo).

Corollary 1.1 TLet g and H be as defined in (1.3) and (1.11),

respectively.

Then m(xo) = m'(xo) = v(xo).

5. Existence of Solutions to the first Minimax Problem in Control Theory

In this section we give a corrected proof of Theorem 6.1 of the previous
progress report. The proof depends upon an essentially well lnown lemma on
the continuity of solutions of differential equations with respect to small
variations in the equations themselves., This lemma is formulated below as
Theorem 2.1 in the form convenient for our purposes; and since the. theoren
in exactly this form may be hard to find in the literature, we give its
complete proof using familiar techniques.. The main theorem 1is, however,
Theorem 2.2 which is essentially.a repetition of Theorem 6.1 of the
previous progress report; but it also contains a statement tending to
give meaning to the quantity m(xo) in the case whgre R 1is a sphere.

In this connection the reader is referréd to the first paragraph of
Section 1.

In what follows leading up to Theorem 2.1 we have replaced the
pair (w,u), i.e. ({%ind","control" ), by a single vector 9. The purpose
of this modification is salely to abbreviate the statement and proof of
Theorem 2.1l. Once this theorem 1s proved, we revert to the previous
terminology.

We consider a differential system of the form

ko= £(x0(t)
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where x is an n-vector, the dot denotes differentiation with respéct to the
independent variable t(meferred to as the time), £ is an n-vector function,
and @ is a k-vector. We suppose T (x,P) to be defined for all x in
n-dimensional vector space or some open subset X thereof and for all ¢ in
a bounded portion V of k-dimensional vector space.

The known functions @(t) inserted in the right hand number of {2.1)
are assumed to belong to a space & of functions whose domain is the time
interval OstsT* and whose range is inV. We introduce into the space o a

metric, denoted by {9-®] and defined by
- l.u.b. -
lo-8f = siiepw lo(t) - &)

We assume that f(x,@) is continuous in XxV and, denoting by KX any
bounded subset of X, we assume that there exists a constant LK such that

the following Lipschitz condition

l£(x,9) - £(x,0)l s L [Ix - x| (2.2)

is valid whenever x and x both lie in K and peV. Finally we assume
that f [x(t); @(t)] is Lebesgue measurable whenever Qe and whenever Xx
is a continuous function of t with values in X. These conditions are
sufficient to insure the existence and unigueness of the solution x(t,xo,m)
of (2.1), corresponding to any @e®, such that X(O,XO,¢) =x. Itis
assumed that this solution exists over a time interval [O,?Jc:[b,T*J 3
regarded as fixed at least for fixed Xy for any @e®., That is T Imay

depend on X but not on Q.
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Theorem 2.1. If V is sequentially compact, then x(t,xo,@) is continuous

in t and ¢ for te [b,TJ and @e®.

-Proof. Let £ 7 -7 ana Pe @ and let € be a preassigned positive

number. Now X(t,Xo;@) and x(t,xo,é) both exist for O0stsT if @ as

well as @ Dbelong to @. It is required to show how %o construct a number

® such that
lx(t,x_,9) - x(Ex,8)] < € (2.5)

as long as |t-E| and [o-¢f both do not exceed B.

For this purpose choose a positive number & < 2-16 and let the set K

be defined as follows:

xeK if and only if |lx - x(t,xo, ?)|| s o for some t on O,T].

Since X is open and the set of points x on the trajectory x = x(t,xo,@)
for Ost<T is compact, K will be a subset of X 1f & is sufficiently

Small. We assume that O has been so chosen. It is also obvious that KX

is bounded and closed.

 Since KxV is sequentially compact and f(x,p) is continuous, it must

also be bounded in XxV. Let us therefore write

l£(x,9)| < B for all xeK and @eV. (2.4)

Moreover the Lipschitz condition (2.2) is available.

Let n = ozL(eLT-l)'l, where L = Ly, is the Lipschitz constant appearing

in (2.2). Choose o so that

“f(x)é) - f(x:q))“ <n for H)"'CPH <o, (2.5)
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provided also, of course, that @, as well as 9, is tn V. This is

possible since we have uniform continutiy in KxV. Notice that, if e

and J-9] < o, we also have afortiori (from the definition of [o-2))
tnat |3(t) - o(t)] <o, so that ||£(x,§(t)) - £t <n for any

t on [O,T*J and  xeK,
Corresponding to any ®e® such that o - ¢) < o, we consider the

sequence

X0(t) = x(t,x,,5)

t
-1, 7
Ht) = X, * f f[xf.1 (1), cp(“fr)] dr, m=1,2,3,... (2.6)
o] . .
We first prove by induction that the members of this sequence exist and
that for m.= 0, 1, 2, ¢*°
m
s-1.8
m - IL” 7t
6) - xlen B0 £ 1) Lo (2.7)
s =1

which, for OstsT does not exceed nL—l(eLT-l). = o so that our inductive

proof also establishes the fact that xm(t)eK for m=0,1,2,...and for

te [0,7] .

The statement is obviously true for m = 0. Make the inductive

hypothesis that (2.7) holds when m is replaced by. m-1 and that con-

sequently xm_l(t)eK. Using the abbreviation x(t) = x(t,xo,ffi) we

evidently have

x(t) = x +f: f[i(*'t); fé(f)] dz (2.8)
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This is true, since (2.8) is merely the integrated form of (2.1) with
p=¢p and x=X. Using this same abpreviation our inductive hypothesis

appears in the form, -

m-1
) s-1 s
k) - 5 = 1) Bor— (2.9)

sd
s=1

for OstsT. Subtacting (2.8) from (2.6) and performing some obvious

estimates, we find that

t
e s [ e [ He,06)0] -2 [76),80)] |

< f e Lo ese(e)] =2 [E e8] I ax + f tnf[xm-"lu),c"m_wﬂ

-2 [2(),8()] || ax

Since xm*l(r)eK, x(1)eK, 9e® and [P - 9] < o, we may use both

(2.5) (with x replaced by xm—l) and the Lipschitz condition. We accordingly

find that

t 't
v +n [ W) - o) e

) - w5l s [

el

Hence, from our inductive hypothesis (2.9) we deduce that
Ls—ltx

o _ el S 45l
[x7(t) = x(e) = b + nz (R =
‘ s=L1 ,

s=1
This completes the induction.

Now that x¥°(t) is known to lie in KX, where the uniform Lipschitz
condition is valid, it is easy to see that the well known techﬁique due
to Picard and Lindeldf is availeble to prove thet as m = ©, the x (t)
tend uniformly to the solution of (2.1), which takes on the initial value
X e Since this solution is unique, we thus are enabled to write
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1im | m .
Do w X (t) = x(t,xo,cp) uniformly on [O,T].

Hence, from (2.7), we find that

(e, _,9) - x(e,x,@) 5 (1) = @ <@/ e (2.10)

as long as |$-9} < o. Moreover, from (2.1) and (2.4) , it is also clear
that

I(t,,,8) = x( £,2,@) = B-E| <@/2) ¢ (2.11)

ir |t-t| < (23)'1e. From (2.10), (2.11), and the triangle inequality, we

thus find that
“X(’G,XQ:CP) - X(i:xogé)” v<(1/2)'E +(1/2)€

provided that |E-t| and [3<p] are both less than © = min [9,(2B)—l;7.
This complets the proof of Theorem 2.1.

We now revert to the system

8: X =lf(x,w,u) (2.12)

where xe€X, f, w and u are as described in § 1 of the Second Progress

Report. We assume that f 1is continuous in x, w, and u, and moreover

satisfies a Lipschitz condition in X,

‘lf(x’5)w;u) = f(x)VJu)“ s LKH x' - x|

-2-13-



when x and x' belong to any fixed bounded region KecX eand w and u take
on any values in the ranges of functions in the sets. W and U respectively.
It is well known that these assumptions are sufficient to insure the existence
and uniqueness of solutions for - S, at least'if £ E;(t),w(t),u(ti] is measure
able when x(t) is continuous, and weW and uel.
Theorem 2.2 If U and W are sequentially compact and S 1s T-~tame,
then there exists a solution forlthe first minimax problem for S. In other words,

given xoeRT, there exist u¥eU and w¥eW such that

» . ,
m(xo) = OéﬁéT ”x(t)xoyw*:u*)“:

where x(t,xo,w,u) is the solution of S reducing to X, when t = O.
Moreover, the trajectory x(t,xo,w*,u*) does not leave the sphere R for
OstsT and therefore the number m(xo) is of significance in ?he sense that
it measures the worst possible result which might be obtained whenfthg best
control is used to counteract any wind.

Proof. We invoke Theorem 2,1 to insure us that x(t,xo,w,u) is continuous
in t, w and u. In doing this, of course, we interpret the ¢ of Theorem 2.1
to stand for the pair (w, u) and the space O then consists of all peirs of
functions (w, u) in which weW and ueU. It is seen that the hypotheses; both
those stated explicitly in Theorem 2.1 and those contained in the presmble, are
satisfied. |

Since x(t,xo,w,u) is continuous, as stated, the same is true of

|]x(t,xo,w,u)l
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From Theorem 3.2, of the Second Progress Report, it now follows that

max . .
g(xo,w,u) = OeteT Hx(t,xo,w,u)ﬂ is a continuous function of w and u.

From Theorem 3.3, of the Second Progress Report, we now conclude that there

exist w¥eW and u¥eU such that

max min
g(xo,w*,u*) = '[ueU g(xo;w.vu)]

Using equations (1.5), (1.4), (2.13) and (1.3) in this sequence we thus

obtain
_ mex _ .
o) = 25 )+ T [E5 s st
nax
= OstsT ”X(t,xo,w*,u*)“,

thus completing the proof of Theorem 2.2

-2-15-
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CHAPTER 3



In previous progress reports we dealt with a certain minimex problem which
appeared to be of limited significance in regard to control systems for launch
vehicles. We now propose another problem, which at first sight might seem only
trivially different from the previously considered problem. Yet, the difference
is just enough so that we are led to a significant minimax problem, whereas pre-
viously we had decided that the only immediately significant problem was a
maximin problem, even though at the end of § 1 of the Third Progress Report,
we managed, by fairly sophisticated ideas, to rephrase it as an equivalent
minimax problem.

We now consider the system
S: % = f(x,w,u)

where x 1is an n-vector representing the system's state, the dot represents
differentiation with respect to time t, w and u are vectors (of any
dimensionality, not necessarily n), end where f 1is an n-vector function
of x,w,u, defined, say, for x€X, weW¥, end ueU*,

We consider a class W of functions W (referred to as "winds") which
map the time interval [0,T] into the set W¥ eand a class U of functions
u (referred to as controls) which map X dinto U*.

Underrsuitable conditions on f eand the class W and U, the system

S, which is now thought of as taking the form,

% = £(x,w(t),ulx)),

admits through each initial point X a unique solution

x = x(t,xo,w,u), with x(O,xo,w)u) = x_.
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Moreover, the system is supposed to disintegrate whenever the solution
emerges from some given region R& X. We find it therefore useful to say
that the system S is uniformly T-tame with respect to R, if there exists
a subregion RT(C R) and a non-vacuous sub-class V(& U) of controls, such
that x(t,xo,w,u) € R as long as xR, O <tsT, weW, and ueV. We hence-
forth assume that S is uniformly T-tame in the sense of this definition.

Suppose next that it is desirable that a given function F(x) be kept
as small as possible during the motion. More precisely, we are interested

in minimizing by proper choice of the control w the maximum value of

F[x(t,xo,w,u)] for x _€Rp, OstsT, and for weW. Thus, letting

max max

g(w,u) = &g { OstsT F [x(t,xo,w,u)] lr s

o T

we pose the guestion es to the existence of a "pad" wind w¥eW and a "good"
control wu¥eV, such that

g.1.b. [rl.u.b. g(w,u):} = g(w*, u*) .

wev weEW

If we prefer not to make our results independent of X, We could let

max
g(XO;W:u) = 0 st<T ¥ [X(t:xo:W:u)]

and pose the question as to the existence of a "bad" wind w¥eW
(relative to this particular initial point) and a "good" control u¥eV

(also relative to this perticuler initial point), such that

. ] . L] .b‘
i ]e- '«3 [ 3} EW g(xo,w,u)] = g(u¥, u*).
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The material given in sections 2 and 3 of the Second Progress Report is
probably sufficiently general to apply to such questions of existence in the
present problem. However, it is clear that considerable care must be exercised
in specifying the class U. If this class is not Lipschitzian, for instance,
we could be faced with the loss of the uniqueness of solutions of &S.

In comparing the present problem with the one formulated previously
in § 5 of the Second Progress Report and treated more fully in the Third
Progress Report, it is seen thet in the previous work the class U was a
class of functions uft) defined on the interval 0stsT, whereas now the
class U is a class of functions u(x) defined for xeX. Of course, since
x is eventually thought of as a function of 1, it appeared at first sight
that this difference was only superficial, u(t) = u(x(t)). But this appearance,
itself, is superficial. Our previous fundamental difficulty was connected with
the fact that it did not seem sensible to select a good control u(t) in-
dependently of the wind w; whereas, now, even though u(x) may be selected
independently of the wind, we are led inevitably to a u(t) = ulx(t)], which
is indeed not independent of the wind w, since the x(t) written above is
just an abbreviation for x(t,xo,w,u), which, of course, depends explicitly
on both the wind and the control.

It may have been noticed by the reader that in the above formulation
we have used and defined the expression “uniformly T-tame'.  Evidently,
9t is up to us to explain the significance of this term and its relationship
to the (non-uniform) "potameness” first introduced in the Second Progress

Report, p. 21, For this purpose consider again the system
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S: % = f£(x,w,u). (1)

We say that a set A(< R) is T-tame with respect to R if for any erA and

any weW +there exists a control u(x) = u(x,xo,w) in U such that
x(t,xo,w,u) €R (2)
for all O0stsT. Thus, for any xoeA the set

condition (2) is satisfied} (3)

U(x _,w) = { uel
o}
is not empty.

We say that the system S is T-tame with respect to R if there

exists a non-empty subset RT of R which is T-tame with respect to R.
Let A be T-tame with respect to R. If xoeA we know that
U(x_,w) # @ for every weW. However, the set

v(x ) = {1 0(x,w) ()

weW

may be empty.

Now let A be T-tame with respect to R. We shall say that a

point x €R, is uniformly T-tame with respect to R if V(x) # 2.
S T

This is equivalent to the requirement that there exists at least one

v¥(x)eU such that

x(t,xo,w,v*) €R for all OstsT and all weW (5)
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Here v* is, of course, independent of w.

A set A is uniformly T-tame with respect to R if every point in A

is uniformly T~tame with respect to R and, in addition, the set

1 v, | (6)

x €A
o)

is not empty. Thus, a set ACR is uniformly T-tame with respect to

R iff there exists at least one (fixed) v¥eU such that
x(t,x,w(t),v*(x)) €R for OstsT, all weW'and all x €A.- . (7)

Here +v¥* is independent both of w and X

If A is uniformly T-tame with respect to R we denote the
(non empty) set (6) by V(A).

We say that the system S is uniformly T-tame with respect to
R if there exists a non-empty subset R,CR such that V(Rl) # g.

Let A (< R) be uniformly T-tame with respect to R. If V) is

any non-empty subset of V(A) then clearly
x(t,xo,w,u) €R for all OstsT, all x €A, all weW and ell veV, (8)

The converse also holds: If V, satisfies (8) then Vlc:.V(A).

Gi{ren e non-empty subset V in U, the set
{xoeR l x(t,xo,w,u)_ €R for all 0stsT, all weW, all veV}» (9)

will be denoted by R(V).
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(1)
(2)

(3)

The following relations clearly hold:

AC BER) » V(B)e=v(a)

v,e VQ&U) - R(VE) < R(Vl).

R(V(A)) DA

V(R(VO)):: v
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CHAPTER 4




1. INTRODUCTION AND FORMULATION OF THE EXISTENCE PROBLEM

In the fourth progress report, we indicated a desirable modification
of the minimax problem as previously understood. While this modification
permits the application of certain general results contained in the second
progress report, it was found necessary to generalize Theorem 2.1 of the
third progress report in order to obtain a suitable tool for establishing
the desired existence theorem. The generalized Theorem 2.1 is likewise
denoted as Theorem 2.1 and appears in the next section of the present report
with complete proof. The method of proceeding to the proof of the. existence
theorem is given in Section 3. The problem itself has already been formulated
in the fourth progress report. -For the sake of completeness, we reproduce the
formulation hefe.

We consider the system
S: % = £(x,w,u)

where x is an n-vector representing the system's state, the dot represents
differentiation with respect-to time t, w and u are vectors (of any
dimensionality, not necessarily n), and where f 1is an n-vector function of
X, w, u, defined, say,for xeX, weW¥*, and ueU¥.

We consider a class W .of functions w(referred to as "windsi) which
map the time interval [0,T] into the set W¥ and a class U of functions
u(referredi to as “controls”) which map X into U¥*.

Under suitable conditions on f and the class W and U, +the system

8, which is now thought of as taking the form
X = f(x)w(t): u(x>))

admits through each initial point X, & unique solution x = x(t,x ,w,u)
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such that x(O,xO,w,u) = X

Moreover, the system is supposed to disintegrate whenever the
solution emerges from some given region R<X. We find it therefore useful
to say that the system S is uniformly - T-tame with respect to R, 1f there
exists a subregion Rj (©R) and a non-vacuous sub-class V(CU) of controls,
such that x(t,xo,w,u) €R as long as x €Rp, O st s T, weW and uel.
We henceforth assume that S is uniformly T-tame in the sense of this
definition.

Suppose next that it is desirable that a given continuous function
F(x) be kept as small as possible during the motion. More precisely, we
are interested in minimizing by proper choice of the control u the maximum
value of F[x(t,xo,w,u)] for x €Rp, O st sT, eand for weW. Thus,

letting
max max
g(w)u) = X €R {OStST F[x(t)xo)w)u)]} 2
o T T :

4 !
we pose the gquestion as to the existence of a "bad” wind w¥eW and a 'éood'

control u¥eV, such that

g.1l.Db. l.u.b.

uev weW .g(W;u) = »g(w*,u*).

In section 3 we answer the question in the affirmative, at least if

flx,w(t), u(x)] satisfies a certain reasonable Lipschitz condition and if

R,, W, and V are compact.

T}

| There remains a lot to do in examining the usefullness and significance

of this result. For instance, both the Lipschitz condition on f£[x,w (t), u(x)]

and the hypothesis on the compactness of ' W preclude the possibility of using



discontinuous controls. Also the limitation of u to the set V dis awkward.

One might expect a better result if we were to contemplate

g.1.Db. l.u.b,
uevy weEW g(v,u) |,

but this leads to technical difficulties, since g(w,u) may fail to be
defined throughout the product space W x U. Other unanswered questions con-
cern the properties of the maximal controllable region RT' Is it connected?

Does it contain the origin?

We hope to answer questions of this type in the next progress report.
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2. ON THE CONTINUITY OF SOLUTIONS OF DIFFERENTIAI, SYSTEMS.

We consider a differential system of the form
k= flx,9(x,t)] (2.1)

where x 1is an n-vector, the dot denotes differentiation with respect to the
independent variable t (referred to as the time), f is an n-vector function,
and @ is a k-vector. We suppose f(x,p) to be defined for all x in
n-dimensional vector space or some open subset X thereof and for all ¢ in a
bounded portion V. of k-dimensional vector space.

The functions @(x,t) inserted in the right hand member éf (2.1) are
assumed to belong to a spéﬁe ® of functions whose domain is the Cartesian pro-
duct space of a fixed open time interval I and the set X; and the range of
the functions @ 'in ¢ is assumed to lie in V. We make ¢ a normed metric
space by defining the norm of ¢ as follows:

_ 'L.u.b,

Ie] - tex,xex 0G0 -

Contrariwise [|@]] refers to a norm for the k-dimensional vector space of which

V is a subset. Likewise ux” refers to a norm for n-dimensional vector space.
There is never any possiblity of confusion regarding the use of |]...” to

denote a norm in k- or n-dimensional space.

£(x,p) is assumed to be continuous in X x V.

Denoting by X e bounded subset of X, we assume that there is a

“Lipschitz’ constant LK such that
lelx, o(x,)1 -£lx,9(x,t)] | = | * - x” (2.2)

)

whenever X and x Dboth lie in K and oed.
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We also assume that fl[x(t), ¢(x(t),t)] is Lebesque measurable
whenever ¢ € & and x is a continuous function of t with values in X.
Let x(t,xo,w) denote the solution of (2.1) which reduces to x_
when t =0 € I. Here ¢ is a fixed element in ¢. The classical
existence theorems for systems of différential equations assure us that
such a solution exists and is unique for 0 s t s T for some sufficiently
smell T. Given x eK¥<=X, we further assume that x(t,xo,w) exists over
the time interval [O,T]<I, where T is independent of x_, and @, as
long as xO€K* and <.
Theorem 2.,/ If V is sequentially compact, then x(t,xo,@) is continuous
simultaneously in t,x_, and ¢, for tef[0,T], x €K*, and @eo.
Proof Let te[O,T], @¢o, ioeK*, and let € be a preassigned posi-
tive number. Now x(t,{co,'é) and x(t,xo,cp) both exist for 0 st s T, if
x  and ¢ (as well as io and @) belong to X*¥ and ¢ respectively. It

[o}

is required to show how to construct a number 3 such that

”X(t,XO,CP) - X(‘E,}Eo,q-i)” <e (2.3)

as long as {t -, ”Xb - io” and Jo - ¢ ls s.

For this purpose chooose a positive number Q< 2~l € and let the

set K %be defined as follows:

x€K if and only if !lx - x(t,io;é)“ sa for some t on [O,T].

Since X 1is ppen and the set of points x on the trajectory x =x (t,%4,9)
for OstsT is compact, K will be a subset of X if & dis sufficiently

small. We assume that O has been so chosen. It is also obvious that X

is bounded and closed.

Since KxV is sequentially compact and f£(x,9) is continuous, it
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must also be bounded in KxV. Let us therefore write

“f(x,cp)”<B for all xeXK and oeV. (2.%)

Moreover, the Lipschitz condition (2.2) is available. Let 1 =Q L(EeLT— l)_l,

where L = LK is the Lipschitz constent appearing in (2.2). Choose o =0 that

fl£x,8) - £0x,0)f < ror 15 - ol <o, (2.5)

provided also, of course, that @, as well as @, is in V. This is possible
since we have uniform continuity in XxV. Notice also that, if o¢@edp and

1 - 9]< o, we also have a fortiori (from the definition of '6.— @’) that
ll@(t) - @(t)“ < g, so that
nf(x,cb(t)) - f(x,cp(t))“ <n forany teI and x € K.

Corresponding to any @ed such that '5 - ¢[j< o, we consider the

sequence,

»
(o]
—
ct
~
1}

X(t,io,ﬁf))

b
8
N
t
SN
1]

x, + ‘j; f[xm-l<T),_@(Xm-l(T),T)]dT, m=1,2,3,... (2.6)

o}

We first prove by induction that, if ”Xo - i0”< B = L—l, the members of

this. sequence exist and.that . for m = 0,1,2,...

m-1 k k m-1 Lk k+l
- = t
[I<"tx) - X(t,xo,CP(t))// s B Lfr + Zn Iﬁ;ﬂg (2.7)
k=0 =0 :
s g+ (T 1) sa< 27t

" inductive proof thus also establishes the fact that xm(

t)eK for m = 0,1,2,...



The statement is obviously true for m = 0. Make the inductive
hypothesis that (2.7) holds when m is replaced by m-1 and that consequently

xm’l(t)eK. Using the abbreviation x(t) = x(t,:‘co,i‘p), we evidently have

t

x(t) =%, + 5 £[x(7), (x(r),7)] ar (2.8)
o}

This is true, since (2.8) is merely the integrated form of (2.1) with

@ =¢ and x = X. Using thisisame abbreviation our inductive hypothesis

appears in the form, .
m-2 k -k m-2 k_k+1

|y - x| = > el " T (2.9)
k=0 k=0

for 0 =1 s T. Subtracting (2.8) from (2.6), we find that

() - 7(e) = x, - X, S { L), o(FTH(w),1)] -£lX(7), cb(i(f.z,w>1‘}éw
=y - T X{f[xm'l(»¢>,w<x )£, 8 ), ) s
(“t { SESOR G OB} -f[im,@(i(%),v-v)]}‘a:v.
Hence lp |
) x( (&) =[x J”fi 2,005 5), )12 4), 5 ()] ar

‘f[xm

RO ORI DR COR) | B
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We next use the fact that " X, - io,’< B, as well as (2.5) and (2.2). We thus

find that

5.
5t

”xm(t) - ;‘c(ti)“ <B+ j nat + L SC “ Sy - i(a’r)“ ar.

o} o

Hence, from our inductive hypothesis (2.9) we deduce that

o - m-2 k+l k+1 m-2 k+1, k+2
[y -zl <p + ne + p— S Lot
' (x+1)! (x+2)!

B =0 k=0
. m-1 ; defj . m-1 L_l._tl'*'l
) 7] 2

=0 £=0

This completes the induction. R

Now that xm(t) is known to lie in X, where the uniform Lipschitz
condition is valid, it is easy to see that the well known technique due to Picard
and Lindeldf is available to prove that as m — oo, the x™(t) tend uniformly
to the solution of (2.1), which takes on the initial value x_ , Since this
solution is unique, we thus are enabled to write

lim :

m .
n oo X (t) = x(t,xo,Q) uniformly on [O,T].

Hence, from (2.7), we find that

[[x(t,%,,0) - x(6,7,8:))]] <2« 'ﬁe.;O)

-

as long as 'cf) -¢)<o end ”io - X “< 8. Moreover, from (2.1) and (2.4), it

is also clear that

x(t.%,,8), -x(E5,,8) = sle- Tl <27 (2.11)
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if |t - %)< (2B)—l €. From (2.10), (2.11), and the triangle inequality, we

thus find that
[lx(t,x,0) - x(E,2,8) < (1/2)e + (1/2)e = ¢

provided that [£ - ¢} Jo « of and & - x )| sre a11 less than & = minfg, (2B) Te,B]. |

This completes the proof of the Theorem.
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3. EXISTENCE OF SOLUTIONS TO A MINIMAX PROBLEM IN CONTROL THEORY.

We recall the problem intpvoduced on p.2 of the Fourth Progress Report,

where we set

max max
g(W;u) = F[x(t)xoyw;u)] )
X €R O=st=T
o T
F being a continuous real valued function of the vector x. We posed the
\Y
guestion as to the existence of a " pad" wind w¥eW and a "éoo@ control u¥eV,

such that

.1.b. l.u.b. : .
g, é Vv weEW g(wl)u) = g(w*,u*).

The answer to this question is affirmative if W and V are sequentially compact
and if RT is closed as well as bounded. We support this statement with.the
following proofﬁ

According to Theorem 2.1, x(t,xo,w,u) is continuous in t,xo,w, and u,
In reaching this comelusion, we, of course, interpret the ¢(x,t) of Theorem 2.1,
to stand for .the.pair.. (w(t), u(x)). and the space @ then consists of.all pairs
of functions (w,u) in which weW and ueV. It is seen that the hypotheses,
both those stated explicitly in Theorem 2.1 and those contained in the preamble,
are satisfied. |

Hence F(x(t,xo,w,u)) is continuous in t,x_,w, and u. -According to
Theorem 3.2, p. 15 of the second prOgreés report, it then follows from the
compactness of RT and the interval OstsT as well as of W and V, that g(w,u)

is continuous in w and u. Finally, according to Theorem 3.3, p. 17 of the

second progress report, there exists w¥eW .and u¥*eV such that
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g(w¥,u¥)

as we wished to prove.

min

uev

g.1l.b.

uev

max
g<W)u)
weW
l.u.Db.
weW g(wyu)
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CHAPTER 5



1. SOME ELEMENTARY THEOREMS CONCERNING UNIFORMELY T-TAME SETS

As in the previous progress report, we consider the system
S: x = f(x,w,u),

where x 1is an n-vector, the dot represeg@s differentiation with respect to time
t, w and u are vectors (of any dimensibnality, not necessarily n), and where
£ is an n-vector function of x, w, u, defined, say, for xeX, weW¥, ueU¥,

We consider a class W of functions w which map the time interval
[0,7] into the set W¥ and a class U of functions u, which map X into U%.

Under suitable conditions on f and the classes W and V, the system Sl
which is now thought of as taking the form

% = £(x,w(t), ulx)),

admits through each initial point, a unique solution x = x(t,xo,w,u), such that
x(O,xo,w,u) = X

According to Theorem 2.1 of the previous report x(t,xo,w,u) is continuous
in all its arguments if W and V are sequentially compact metric spaces. This
continuity is used in some parts of the present section and in Section 2. It is
not used in Section %. Naturally, wherever the continuity of x(t,x ,w,u) is not
assumed, we are concerned with results which hold even when W and V are not
sequentially compact.

For convenience we begin with.a reformulation of some definitions already
introduced (cf. fourth progress report p. 5) and add thereto a few simple
theorems.

Definition 1.1 A non-empty set A&R is said to be uniformly T-tame with respect

to R under the (non-empty) set V(EU) of controls if

x(t,xo,w,u) €R

for all x €A, te[0,T], uev, and Wwel.

Definition 1.2 Let A be an arbitrery (non-empty) subset of R. Then let
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V(A) be the largest subset of {J under which A is uniformly T-teme with respect

to R. That is,. V(A) consists of all ueU such that x(t,xo,w,u)eR for all
x €A, te[0,T] &and weW.
Of course, if V(A) is vacuous, A is not uniformly T-teme under any subset
of' .
Theorem 1.1 Let A and B be subsets of R. Then
v(aV B) = v(a)N v(B) ' (1.1)

v(afB) = v(aW v(B). (1.2)

Proof of (1.1) Let ueV(4U B). Then by Definitions 1 and 2, ueV(A) and ueV(B).

Hence
V(AU B) € V(&) V(B), (1.3)

On the other hand, if ueV(A)f) V(B), then ueV(A) end ueV(B), so
that x(t,xo,w,u) eR as long as O0stsT and x, is in A or B. In other words, -

as long as xoeAU B. This meens that ueV(AU B). Hence we conclude that
V(AU B) > v(A)N V(B). o (L.h)

and then (1.1) follows immediately from (1.3) and (1.k).
Proof of (1.2). Let ueV(AW V(B). Ten x(t,x ,w,u)eR for OstsT and for all
x € AN B, so that ueV(AN B)., Hence (1.2) dis seen to be valid.
Incidentally we notice from Theorem 1.1 that the union of two_sets A and
B, each of which is uniformly T-tame under non-vacuqus subsets of,_lﬁ" , need not
be T-tame under any subset of Y . For V(A) and V(B) may have no common element.
We also notice the following obvious |

Corollary 1.1 If AeCeU, then V(C)eV(A). ' (cf. Fourth Progress Report p. 6(2)).

Proof et B = C-A; so that C= AVB. Then from Theorem 1.1, ‘we find that

v(c) = V(ab B) = V(A)A V(B)eV(A).

i

Definition 1.3 If V is any non-empty subset of U, we denote, by, Q(V), the

set of points: X €R, such that x(t,x ,w,u) eR for all te(0,T], all weW and



all ueV. In other words, Q(V) 1is the largest subset of R that is uniformly
T-tame with respect toc R wunder V. We shall refer to it briefly as a maximal
uniformly T-tame set (under ~V with respect to R).

Notice that Q(V) was called R(V) in the Fourth Progress Report, pp. 5-6.

Since the letter R is used also for another purpose, it seems wise to change the

Theorem 1.2 Let Vl and V2 be subsets of U. Then

(v uv,) = Q(v)nalvy) | (1.5)

Proof of (1.5). Let erQ(VlU'V2). Then X(t,xo,w,u) ¢R for all - te[p,T], all
weW and for ueV, (i =1 or 2), Hence erQ(Vi) both for i =1 and i =2, In
other words X _€ Q(Vl)ﬂQ(Ve), which establishes (1.5) within the sign =
replaced by &=. '

Next let x € Q(Vl)’)Q(VQ)’ This means that xer(Vi) for i = both 1 and 2.
By definition 1.3 we now have x(t,xo,w,u) eR for all te[0,T], all weW , end
all ueV, (i = 1or2); that is, as long as ueV, or ueV,; that is, as’long as

2

3, this means that x e Q(v1 U V2_), which establishes

18 vy e ol -

ueVlu Voo But by
(1.5) with the sign = replaced by =3.
This result combined with the previous result proves (1.5) completely.

Corollary 1.2 If V.G v5cU, then Q(VB)CQ,(Vl).

Proof Let V2 = V3 - Vl’

so that V3 = VlLJVQ. Then from Theorem k,2vwe find

that

AV5) = VU 7)) = a(V) N alVp)ealv)).
Theorem 1.3 Let R Dbe closed and let A be a subset of R. If U is sequentially
compact, then so is V(A).
Proof Let uy,up,Uze-- be an arbitrary sequence of controls in V(A) . Then,
since IT is sequentially compact, there exists a convergent subsequence ul*,ue*,ua*,...,
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whose limit u¥ = nlim , is an element of U. It suffices to show that
u* ev(a). Since un*eV(A), we have x(t,xo,t,w,un*)eR for all x €A,
te[0,T], weW. Since x 1is continuous, we have
lim
n - o

x(t,xo,w,un*) = x(t,xo,w,u*).
Since R is closed x(t,xo,w,u*')"eR for all x €A, te[0,T] and weW. Since
V(A) consists of all u for which x(t,xo,w,u) €R for all x €A, te[0,T] and
weW, it follows that u¥* eV(A), as we desired to prove.

Let I be a class of controls contained in U under which it is known that

some set € R is uniformly T-tame (with respect to R). The largest such set,

we call Rp. According to Definition 1.3, Ry = Q(L). Now let

V= V(RT), (1.6)

this being the largest class of controls contained in U:. under which RT is
uniformly T-tame with respect to R.

Theorem ).k, Ry = (V).

Proof Let R¥ = &(V) (1.7)

Since Leve U, we have by Corollary 2 (of Theorem 2)

(V) < (L).

In other words,
R¥ G R, ' (1.8)

By (1.6) Ry is uniformly T-teme under V. But by (1.7), R¥ is the largest

uniformly T-tame set under V.  Hence R*D RT’ Combining this result with (1.8),

we have R¥ = R as we wished to prove.

T)



2. ON THE INTERPRETATION OF THE SOLUTION OF THE MINIMAX PROBLEM

In what follows the V and the RT 'may have been introduced in the manner
indicated at the end of Section 1. However all results hold as long as

RT= Q(v), that is, as long as R, 1is the largest subset of R, which is Tetame

T
under V (with respect to R).

Let F(x) be continuous in R, and let

l. u. . b.
OstsT

g(w,u) = F[x(t,xo,w,u)].

erRT,

Then, as proved in the last progress report, if V and W are sequentially

compact, there exists u* €V and w¥eW, such that

min max
g(w*,u*) = uev [WEW g(w)u;"
-«

If, however, V or W are not sequentially compact but are merely such that

g(w,u) exists, we still have theoretically a result almost as good. In fact,

any positive number €, there exists u¥eV and w¥eW, such that
™

, .
. .l.b. l.u.b.
glrk,u¥) - S10 {w N CRY

L

< €

We wish to examine the significance of the number g(w¥*,u*) in case R 1is
represented by a formula of the type H(x) = k, where H 1is a continuous real
velued function of x and where k is a constant. R 1s thus a closed set.
Among other things we wish to examine the connection between g(w*,u*) and k
in the special case where F = H. It will appear that g(w*¥,u¥) s k. Whence,
if g(w¥,u*) is actually less than k, the advantage of using the control u¥
instead of any u € V, is that the system may be controlled in a smaller region
than R, namely H(x) s g(w*,u¥). This leads to an increased factor of safety
but gives less indication of how a larger region than RT might be controlied

within the original R (that is, with an unchanged factor of safety).



Theorem 2.1 RT is closed.

Proof Let erR - R Since RT is the maximal uniformly T-tame set in R,

T.
the point x(t,xo,w,u) will leave the region R for some t on the interval
[0,7], at least, for a suitably chosen weW and ueV. That is, for this

w, u, and t, we shall have

H[x(t,xo,w,u)] > k.

From the continuity of x(t,io,w,u), considered as a function of its second
argument, we see that we must also have (for the same t,w, and u)
H[x(t;fo,w,u)] >k for all io in R sufficiently close to x_. Hence, by
defintion of RT and R we conclude that io € R - RT‘ In other words
R - RT is open in R. Hence RT is closed.

In the sequel we suppose that H is of class C‘ and that BH//Bx f 0

at any point where H = k. This insures that such points are true boundary

points of R.

Theorem 2.2 If x'oe R, - OFq, Hix{t w,u)]l <k for all

t ¢ [0,T), weW, and ueV. That is x(t,xo,w,u) is an interior point of R.

Proof By definition of RT’ we already know that
H[x(tf,xo,w,u)] s k. (2.1)

Suppose, now it were possible to find t¥* ¢€[0,T], w¥eW, and u¥eV, such
that

Hlx(t*,x,w*,u¥)] = k (2.2)

Then, since we assume that BH//BX % 0, there are points in every neighborhood of
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x(t*,xo,w*,u*) for which H >0, that is, points outside of R. Now the

homeomorphism x = x(t¥,X,w¥,u*¥) between x and x maps every neighborhood

N of X onto a neighborhood N of x(t*,xo,w*,u*). Since X is
o § may be chosen so small that W “Rp.  But then I still

contains points outside of R. Thus there are points X in ﬁ":RT which are

interior to R

taken by the transformation x = x(t¥,x,w*,u*) into points outside of R.
Hence RT is not uniformly T-tame, contrary to assumption. Thus, since (2.2)
leads to a contradiction, we see that the equality sign must be excluded in (2.1),

and this establishes the theorem.
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Assuming that H 4is continuous over all x-space and that for every X

in this space H[x(t,xo,w,u)] is bounded for te[0,T], weW, ueV, we let

l.u.b.

m(xo) = t,w,u H[X(t,XO,W,U)]

By definition of least upper bound, we know that, corresponding to any positive

number €, we can find t¥ e[0,T], w¥eW, u¥eV, in such wise that

m(xo) -e< H]x(t*,xo,w*,u*)] < m(xo). (2.3)

If, in addition, W and V are sequentially compact the t¥, w¥,u* can always be
found in such wise that

H[X(t*,xo,w*,u*)] = m(xo) = ?)3)§ H[x(t,xo,w,u)]. (2.4)

Moreover, by Theorem 3.2 of the second progress report, we also know that m(xo)

is continuous in X, in the case of sequential compactness. In general we can
prove much more in the case of sequential compactness than in the more general case
where compactness is ngt present. In Theorems 2.3 and 2.4 we summarize some further
facts about m(xo). In Theorem 2.3 we do not hypothesize compactness, while in
Theorem 2.4, we do.

Theorem 2.3 I If x_ €Ry - BRT, m(xo) sk

II If x, €R - Ry, m(xo) >k

Proof of I By Theorem 2.2,if xogR

o - aRT, then H[x(t,xo,w,u)] <k for all

te[0,T], weW, and ue V. Hence k 1s an upper bound. Hence the least upper
bound m(xo) can not exceed k as stated.
Proof of IT Since RT is maximally uniformly T-tame under V, we can say

that, when erR - R there exists some te[0,T], some weW, and some uevV,

T)
such that



H[x(t,xo,w,u)] > k. Hence, any upper bound, including in particular the
least upper tound m(xo), must exceed k. Thus we have m(xo) >k as stated.
Theorem 2.4 If W and V are sequentially compact, then
Y
I I erRT - JR

0 m(xo) <k

II If xoeaRT, m(xo)=k

Proof of I By (2.4), we have, since W and V are sequentially compact,

m(xo) = H[X(t*,xo,w*,u*)] (2.5)

for a suitably chosen t¥,w*, and u*. 3But, since erRT - SRT, we know from
Theorem 2.2, that the right member of 2.5 ) is less than k. Hence the left
member is also less than k.

Proof of II If xoeaR, every neighborhood of x has points in R - Rp.
Let Xl’XE’X5"" be a sequence of poimts in R - RT such that

1im
n - o n

Since x is not in the maximally uniformly T-tame set RT’ there exist
n

tne[O,T], w €W, sand u eV, such that

H[x(tn,xn,wn,un)] >k (2.6)

Since [O,T], W, and V are all sequentially compact, we may (by extracting a

suitable subsequence) assume that

lim . ’ lim Y 1lim
= * ! = w¥eW u_ = u¥eV
n —-1%t € €[O,T], n — o W1’]. € ’n—)oo n
n

Hence, pessing to the limit in (2.6), we see from the continuity of H and

x(t,xo,w,u) that
H[x(t*,xo,w*,u*)] z k
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On the other hand, since XO€5RT;fiRT, we know that

H[x(t,xow,u)} =
for all t € [0,T], weW, and ueV. Hence, we find that
H [x(t*,xo,w*,u*)] = k,

which, of course, is the maximum possible value for H[x(t,xo,w,u)] for
te [O,T],\xoeRT, weW, and ueW, and ueV. Hence, for such X, we must
have mn(x ) = k, as we wished to prove.
o
In the special case where F = H, we have

max

g(w,u) = X €Rp, Ost=T Hlx(t,x_, %5 vy

o7

at least, if we restrict attention to the case where we have sequential compact-

. 2 v P S .
ness, so that we can write “max" instead of “l.u.b.. Evidently from Theorems

2.3 and 2.4
max max
o omlx) = T mlx) =k
%o Fot °
Hence k = =% Cmex{maximax Hx(t,x ,w u)]; i’ ;
- xRy l OstsT 2 weWl]ueV o’ _ﬂ }
= max S ma x g ma x Hix(t,x ,w u)]é |
ueViwedW P x R, 0stsT o’ J S

according to Theorem 2.4 of the second progress report. Hence, we find that
x ‘
i n f ma x z
v l wew B8 (W;u) } )
. . ma x
we have [ =k and f is equal to k 1if and only if (w,u)

wewW &
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is the same for every u € V. This would mean that the class V contains
only the set V¥ of controls for which the minimax is attained. Otherwise

V¥ is a proper subset of V and { < k. And letting

1. u. b.
m*(xo) = t €[0,T] H[x(t,xo,w,u)]
WeW, uEv#*

we find that m*(xo) = 4 for xoeaRT and that this

, - max { max (w u)? _ min mex . u)}
- ueV*iweWg ? j T uer* ) wew 8\ *

The region with respect to which we have uniform T-tameness under V* is the
region R¥ represented by H(x) £ { instead of the region R represented by
H(x) £ k. Since [ <k, it is clear that R¥*<R.

Thus our analysis shows how, by limiting attention to the class V¥ of controls
which solve the minimax problem, we reduce the size of the region R with respect
to which we can control RT' This is what we referred to previously as an
increased factor of safety.

If we wish to retain the original R, we could replace RT = Q(V) by
R = Q(v*), which by Corollaryli2 is a larger set than the original Rg. If

V¥ were to contain more than a single element, we could then repeat the entire

process, using R% , V¥, and R, dinstead of RT’ V, and R respectively.
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3. FIRST COMPUTATIONAL ASPECT OF THE MINIMAX PROBLEM: THE CORE OF R.

3.1 Preliminaries

In previous sections of the present and past Progress Reports we discussed
in great length the question of the existence of an optimum minimax
control. It was shown that such & cortrol (or controls) does indeed exist
under the assurption that the function spaces U and W of admissible
controls and admissible winds are sequentially compact. This assumption is
rather severe. It excludes, among others, the rather important case of piecewise
continucus controls. However, it was remarked above, and is reiterated here,
that in the case of non-compact sets U and W one may interchange min and
max by g.l.b. and l.u.b., respectively, without affecting the results signifi-
cantly. Instead of arriving at a distinct element u¥eU which attains the
minimax, we would obtain elements in U which come arbitrarily close to
the g.l.b. of the l.u.b.. In order to hue closely to the line of greatest
practical interest, we hereby adopt the second point of view. Thus, when we
speak of an "optimum minimax control" we no longer imply the existence of a
distinct element in U which attains the minimax. Instead we refer to an
element which may or mey not attain the minimax, but at any rate, comes comfortably
close to it. .

Tt is Tfelt that a meaningful class U must contain at least the class of
all piecewise constant and all piecewise linear controls. However, for the time
being we shall adopt an even larger class. Specifically, we shall assume that
the class U is the class of all uniformly bounded, piecewise continucus con-
trollers. The class W will be introduced in the examples.

The proofs contained in our previous work concerning the existence of optimal

minimax controls were not constructive in nature. They contain no hint as to the
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nature of these controls, nor do they yield an algorithm for computing then.
The results are admittedly of some theoretical significance, yet they leave

the practical problem unresolved.

Tt is the object of the present section to initiate the search for the
actual computation of optimal minimax controls. The reader will recall that the
words "optimal minimax comtrols" are now being used in the sense of our remarks
in the first paragraph above.

The main results are contained in the following subsection (3.2). Section

3,% illustrates these ideas by means of two elementary examples.
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3.2 THE CORE OF R.

Consider the system
X = f(x,w,u), (3.1)

where x 1is a real n-vector, f 1is a real n-vector function of (x,w,u);
w =w({t) and u = u(x) are elements of the (given) function spaces W and
U, respectively, and the whole system is well-behaved in the sense that it
satisfies sufficient conditicns for the existence and unigqueness of solutions.

In the space X o the vector x we are given a closed bounded set R
(the set of constraints). We are also given & positive constant T eand & function
F(x).

Iet now V be a subset of U. We recall the following definition: A non-
empty set A is uniformly T-tame with respect to R under the(non-empiy )set of

controls V if for every xoeA and every weW, the arc

{x(t,xo,w,u) I 0stsT }
ig contained in R for every element wueV., Whenever there is no ambiguity
concerning the definition of the set R we shall simply say that A is uniformly

e e e

T-tame under V.

If Vl is any subset of U, and A 1is any subset of R, then the sets
Q(Vi), V(L) are well-defined. The reader is referred to section 1 of the
presenﬁ Progress Report for the precise definitions.

A first attempt at a formulation of the "practical" (i.e. computational)
aspect of the minimax control problem must proceed essentially as follows:

Let a non-empty set VU be given. Suppose that Q(V) is not empty

and let V' = v(Q(V)). Find a control u*eV' which minimizes (over V') the

‘quantity.
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max max max

well  x_eq(V)  OstsT F(x).

The reader is again reminded of the convention established in the first paragraph
of the Preliminaries to this section.

A major question arises: Which class V (in U) should we start with? Our
first impulse may be to take V = U, However, on second thought this impulse
appears to be misguided. The class U is rather large; it is the class of all
uniformly bounded (with bound 1) piecewise continuous control functions. It has
already been shown that if V,DV, then Q(Vl)c:Q(Vg). Since U is the
largest subset of itself, Q (U) is the smallest uniformly T-tame set available
in R. In fact, Q(U) may well be empty. For if xer(U) then every (!) piece-
wise continuous controller constricts the trajectory through X5 against any win§)
for all O0stsT, within the set R. The system may not even have such points. But

be that as it may, the fact remains that choosing our initial V +to be the whole

set U would result in a uniformly T-tame set Q(U) which is the very smallest

possible (This is our “controllable" set!). If we were to proceed from here and

actually obtain an optimel minimex control for this cholce of V, we would have

found the "best" control for the smallest possible "controlleble" set! But surely

bone of our main concerns is to meke the "controllable" set as large as possible,

for this is the set of initial values in R for which an eventual optimal minimax
control will at least insure the safety of the system. We may summarize our

dilemms as follows: If we maximize the initial set V, we minimize the "controllable':
Q(V)corresponding to it. How then is one to proceed in order to arrive at the Dbest

(i.e meximal) uniformly T-tame set within R? In fact, is there such a maximal
wniformly T-teme set? And if the answer to the last question is in the affirmative,

what is the set V of controls under which it is uniformly T-tame?
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The remainder of this section will provide the answer to the last three
questions.

Let {u} be the set whose sole element is wu. Denote Q({u}) by Q(u).
We shall make use of the following definition.

Definition 3.1 Let U. Uy be elements of U. We say that ué contains u

1 J

written u,u, (or equivalently uwcue) if+# the following condition holds:

Whenever an arc

{x(iyxgy-wﬁl) 50;%;&7) x, end w fixed, xer(ul)}

is contained in R, then &lso ths ar:

173N

{x(i,xo,w;'ug) l OstsT)
is contained in R.

The reader will note that if u is a member of U such that Q(u) is
empty, then u is (vacuously) contained in any other member of U.
s 1

Proposition 3.1 ulc U,

The proof is trivial. This Proposition furnishes en alternative definition of

iff Q(ul)CQ(ug)o

Proposition 3.2 If weu, snd u,@u, then Q(ul) =Q(u2).

Proof Proposition 3. 1.

Proposition 3.3 The relation & is transitive.

Proof ILet ulc: u2 and 1let uzc, u.a. We must show that ulc: uB. This
follows directly from Propositica 3.1, for one
Qu,) € Qfuy) & Q) ,

whence RN P
- /

Defintion 3.2 An admissible countrol uelU 1is said to be an upper bound in U 1ff

ueu for every uel.
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Tt should be noted that it is possible that U Uy and ugcl Uy and

yet LL?Q Uy Therefore an upper bound in U is not necessarily unique.

Definition %.%5 A set B&R is said to be a core of R 1ff

(1) B is uniformly T-tame
(2) If A is eny uaiformly T-tame subset of R, then
AC B.
The set R may or mey not have & core. However, if it dces, then the core
is clearly unigue. In fact, if Bl erd B2 are cores of R then Bl < 82
and on the other hand Bng Bl° Hernce Bl = Bg, We may thus speak of the core
of R. If R has a core we desigrnate it by RT' It is the largest uniformly

T-tane set in R.

We are naturally led to the following rajor decision: If RT exists, we

shall require that en optimal minimax control must be effective throughout the

full core of R,

Prcposition 3.4 If ﬁi and ﬁg are upper bounds in U, then Q(ﬁl) =

Q(uy).

The proof follows trivially from Propo$ition 3.2

The reader will recall that if Q(u) is empty for every ueU, then the
optimal minimax problem 1s vacuous (ro controls are available to choose from).
Therefore we must assume tnat there esists at least one control u such that
Q(u)s=o.

We are now in a position to state the main result of this section.

~

Theorem 3.1 The core of R exists iff U hes an upper bound. If u 1

w

en upper bound in U then Ry = Q(a). If Ry exists then V(RT) is the set of

all upper bounds in U.
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Proof Let u %be en upper bound irn U, Then, by definition, Q(u) is
uniformly T-tame. Let A be an arbitrary uniformly T-tame subset of R.

Suppose A is uniformly T-tame under V. Since VeU and 1 is an uppes bound,

we have

ve u  for all v e '
Hence

Qv) e q(d) for all v e V.
Thus

ACQ(V) = Qlv) < qu).

'
I
veV
It follows that Q(u) is a core, hence the core, of R.

Conversely, let R; be the core of R and let V = V(RT)“ Let wueV. Then

Q(G)DRT. Since R, dis the core of R, Qi) = Ry Let now u be an

arbitrary element of U. The set Q(u) is uniformly T-tame and hence Q(u)= R

m*
It follows' by Proposition 3.1 that ucU. Hence 4 is an upper bound in U.
This complete the proct.
Theorem 3.1 provides us with a key to the first computational aspect of the
! practical” optimum minimax problem. It may be summarized as follows:
(1) The mest desirable set to control is the full core of R (if it exists).
(2) The core of R exists iff U has an upper bound.
(3) The core of R is uniformly T-tame under the set of all upper bounds in
U.

(4) The core of R may be obtained by finding an upper bound w in U, then

cormputing Q(u).
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3.3 TWO ELEMETTARY EXAMPLES

(i) The System X% =w + u,

. Let - x be a real variable and consider the system

S omw(t) + ulx) | (3.2)

Bere w = w(t) is restricted to a certain class W of admissible winds while
u = u(x) is restricted to the class U of admissible controls. The class U
is the class of all real piecewise continuous functions of the real variable x
which map some given interval R contalning the origin (the constraint set)
into the interval [-1,1]. The class W 1s a given collection of admissible winds
whose domain is [0,T] =and whose range is [-o,al. It is assumed that W contains
all piecewise counstant winds (whose domain and range are restricted as above) and
that it is, moreover, reasonable enough to insure that system (5:?) satisfies suffi-
cient conditions for the existence and uniqueness of solutions.

et R be the interval -A < x< A, We shall show that the core of R
exists. This will be done by showing that U has an upper bound. The core or
R will also be computed.

Tet

-1 for all

(@}
N
"
IA
-

ﬁ(K) = 0 for x =20

41 for all -1 < x < O.

We shall show that u is an upper bound in U.
Suppose first that «a < 1. Consider the system X = w(t) + u(x). Let

x_ >0, x,&R.  Then w(t) + ﬁ(x(t)xo,w,ﬁ)) < 0 for eny weW so long as
o
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X(t,xojwpu) > 0. Moreover, the trajectory X(t)xo,w;ﬁ) cannot cross over into

the negative kzlf cf R, since it yere to do so the direction of the vector

ji
a3t

n

field would be reversed., Hence

_ o< x(t)< x_ forall 0<t<T andevery weW.
< S X, ST
Therefore, (o0,Aleq(i). Similarly [-4,0)=Q(u). We also have x(t,0,w,1) = O

for 811 0<t < T =and 2ll w e W. Hence, 0CeQ(u). Thus Re=Q(w) whence
R = Q(di)., It follows that Q(i) conteins every uniformly T-teme subset of R
and therefore U is an upper bouwns, and R 1s the core of R. =

The cas¢ when Q> 1 also yi-ias the fact that u is an upper bound ir

+

U. he deta:ls of the proof are scagwhat more complicated and are left out Tor
lack of time, They will be supplied in the next Progress Report. The core oi

R turns out to be the set [-A + —%L 5 A - g%l 1.

(ii) The System % =w * u

et x,, X, be two real variables and let the vector (xl,xg) be

denocted LY Xo

Consider the systen

e
|
=
TN
o+
®
+
£,
"
pa—

Here w = w(t) is restricted to a certain class W oT admissible winds, while
u = u(x) is restricted to the class U of admissible controls. The classes W
and U are both uniformly bounded in the sense that

lw(t)|< o for all w € W,

lulx)i< 1 forall welU, (3.4)
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these inequalities holding true for all t and x for which w(t) and u(x) are
defined.

The class U is the class of all real piecewise continuous functions of the
real variable x defired in some region R (the constraint set) containing the
origin and satisfying (3.4). We are not as specific about the class W except to
require that it be reasonable enough to insure that system (3.3) satisfies
sufficient conditions for the existence and uniqueness of solutions. We do, how-
ever, specifically assums thal ihe Cisss W contains the class of all piecewise

constant winds whose ra

1ge lies in the interval [-a,a]. The domain of all winds
is 0Kt < 7T, where T 1s some preassigned positive constant.

Tt will be shown in the next Progress Report that the function

{ -1 for &ll x such that x, >0

u(x) = 0 for &ll x such that x, =0
+1 for all x such that Xy <0

+tarns out to be an upper tound in U. The computation of RT is also left

for the next Report.
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b, APPENDIX TC SECTION 1

4

The striking similarity of the formilas in Theorems 1.1 and 1.2 suggests
that these theorems are but special cases of general theorems in set theory. We
shall show that this is the case.

- iy . N . s .

Iet & ard ¥ be arbitrary sets and let/! be a fixed set of certain pairs
(f,g) where f e © end g e . (/* does not, however, ordinarily contain all
such pairs).

A mapping F of the subsets ¥ of ¥ into the subsets ¢ of & is defined

as follows: To say that o =F(¥) means that ¢ 1is the largest subset of ¢

3 S .
with the property that ¢ x v /i, This means two things:

(1) I feF(y) and g e v, ther (£,8) ¢ /.
(2) 1f (f,g) € /ifor 21l g e ¥, then £ e F(¥).
Theorem Let {Woc 3’» dencte any family of subsets of #% . Here & weprccents en

index which ranges over the index set A, which need not be finite or

even countable.

Then
i ! — f’ i
Fllgen Yo 1 = den F(¥g)

Proof Iet f e F[ ba vl By (1), if g is en element of any of the Y

2

ve have (f,g) ¢ /% . Thus, we have (f,g) e/} ror a1l g € Y, SO that by (2)

we have f € F(u’ra) for all @ € A, Hence T € fg F(wa). This establishes the
formula of *the Theorem when the sign = is replaced by the sign < .

Next, let f ¢ va F('\j;a). Therefore f € F(wa) for all « € A. If
g € Y, ve nave  (f,g) € by (1). That is, (f,g) e/ﬁ for all g € ¥_. 1In
particular (f,g) eiﬂ for all g € ;ﬁ&\ifa. Then, by (2), £ e F[ {?a\'/a]. This establishes



the formule of the Theorem when the sign = 1

[47]

replaced by the sign =2 .

From these itwo resulits, t f the Theorem is complete.

jny
()
kel
a3
(@]
O
h
e}
Fi

Tn the epplications to Section 1, the set @ (or %) is the set Fof ..lats
and the set ¥ (or @) is the set U of controls. The set A consists of the
pairs (xoﬁu)y where x, € R and u € U, which have the property that
x(t,xo,w,u)e R for all +t e [0,7] end all w € W. In Section 1, we con-
sidered only the case when the index set A contained two elements. A special
case in which the index set contains infinitely many elements occurs, however,
in the proof of Theorem 3.l.

It is also interesting to observe that the formula of DeMorgan to the effect

that

wnere C [¥] denotes the complement of V¥ in §5 is also a special case of oux
theorem. In this case ¢ and % are identical and /\ consists of all pairs

(f,g) 4in which fe ¥y, geVy, and T # g.
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certain mappings from tue
of another givea set @ vy .

~erms of a subset 0 of the product space § i

S

Jomirol Theory, one can take © +0 pe the rvegion R OI

~-3
Thecren 1 oo ziven 27 th v . . i +he previous prosrvisd f ort
Tre Corollary
3,1 in the
Therem 5.1 of 4he previous progress report. Other relationehips between the e 1ls
Sonerant

of +this section and theose of previous Progress reports will bes oobvious gl

rpreted as the mappings V aznd Q ci =ne
But the mappings H and J, &van roLonoTETEs
nsidered. Whethe T oard J will give riss oo

oeful. Tnsy could indesd be used, DuT oL

(1. 6 3 they will probably merely 1leal oy

4 by way of F and G, Perhaps by usiig

snother Q <thzy xay nelp S0 cotair mew results. In any €Vels, it seems wise TC A%~
velop such zn abswract thecry as completely as possible.

et © e~d U Tog arpitrary SeLS snd let O be a fixed set of certain TALUS
(1, g Y whers £ ¢ @ and g €Y Q dces mot, however, crdi: arily comtaii all s.in

s follows: To say that @ = F (v ) neavs tnat © 1s the largest subsel oI ¥ WITL



This means two things:

(1) If £ e P(y) and g e ¥, then (f,g) € Q.

(11) If (f,g) e 0 for all g e ¥, then T e F(¥).
Theorem 1.1 Let {\ya}denote any femily of subsets of 1. Here @ represents an
index which ranges over an index set A, which need not be finite or even countable.

Then

FL Y v o= Jh O

Proof. Let T ¢ F[U\Lra]. By (I), if g 1is an element of any of the V¥, we
rave (f,g) ¢ Q. Tnus, we have (f,g) ¢ Q@ for all g ¢ Vo SO that by (II;, we
have f ¢ F (wa) for all o € A. Hence f ¢ ﬂF(\ya). This establishes (1.1) when
the sign = is replaced by the sign €=,

Next, let T ¢ []F (v,). Therefore f ¢ F(y,) for all aeA. If ge ¥y ve
nave (f,g) e @ by (I). That is, (f,g) € 0 for all g e Y, and for-all & ¢ A,
therefore for all g et)u/a; .~ Then, by (II), f e F [U\ya]. This establishes (1.1)
when the éign = 1is replaced by the signTD.

From these two results, the proof of Theorem 1.1 is complete.

Notice that F (0) = @, where O is used here to denote the null set. This is
true because ¢ x 0 is void. Therefore & x 0CZQ.

We next introduce a mapping G of the subsets ¢ of ¢ into the subsets V¥
of ¥ defined as follows: To say that V = G(p) means that V is the largest
subset of ¢ with the property that ¢ x Y. This means two things:

(III) If g e G(p) and f e @, then (f,g) € Q.

(Iv) 1f (f,g) e @ for ell f e @, then g € G (p)

Evidently G 1is a mapping very similar to F, the only difference 1s that it
mzps subsets of & into subsets of ¥ instead of the other way around. Thus Therem

11 can also be stated for the mapping ¢ and we thus have for any family { Woc}
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of subsets o ¢, the following Tormula:

, e .
alid o] = || G (o ) it
EQSA o & (Qo/ (1.2

Then V¥ 73 V.

e
N

= ~ - ’ . *

freorem 1.2 Let @ = F(y) azd ¥ =G(9
In other words C[F(y)] 2>V, or, reversing the roles of F and G, FlG(¢)lwvo
Tor azy @ € &,

Proof. Iet gey arnd let f e =F(y). Then (f,g) e Q by (I). Si-c:
LIS R - U s 2. a D E * £\ Many o
this is trus for 8ll f in @, we have g ¢ G(o) =v by (IV,. Taus, every

element of V¥ i1s also an elemsrnt of \lf

Theorem 1,3 If VY, &V, , then F(wl):DF(mjfg)

If 9 cz @, then (9 )=20(9,)
Froof. Let \’/5 = \;;2 — ‘\'Il, so that \Lfe = WIU \4;5
By Theorem 1.1, F (nglU wB) = F(\‘fl)ﬂF WB)

Eence, F(\pg )= F(wl')m F(\,UB)C F(llfl). This establishes tae first part ci ‘hs

Theoren. The second part is obtained by using G d1astead of F and ¢ 12312538

‘\1';[0
Theorem 1.4 QA ¥ ]:;) ‘QA F(\y (1.3;
ol 1, o1 = B, lv,) (1.%)

We consider only the first of these two formulas, in as much as the secornd
follows from the first merely through a change of notation.
First Proof., L=t ﬁwaj} (indexed by & € A) b= arbitrary. Then defize
o, = Flug Zy (12) 6oy ={la(oy) = MI6lE(v,)]
Hence, by Thasorem 1.2 , G{Ucpa]:‘.)ﬂwag
PRI S :
Hence, by Tneorems 1.3 and 1.2 , 'AFLQWQ] =S F 1GLUCPoc] ;}D Ucpa = Us(y

Second Procoi. Let f ¢ UF(\I/Q). Hence there exists & € A, such that

Q

f e F(\lfa')° Hence, 1f g € Vs (f,e) e by (I). This is true in particular, 17

g € cﬂ Yy In other words (f,g) ¢ Q for all g ¢ ﬂwao Hence, by (II) ws heve

e’}



f e F[ﬂ'ﬂ/a] , as we wanted to prove.

The second proof is more fundamental than the first proof. But the first procf
also brings out the fact that the siga?> in the formulas of Theorem 1.4 may be
replaced by the sign =, whenever the same is true in Theorem 1.2. This Is the
case in the De lorgan formulas of Boolean algebra. In general, however, this car 1ot
be done. As a counter-example cousider the following:

ILet ¥ denote the set of the four letters a, b, c, d; 1let @ denote the
set of the four letters «, B, v, &; and let @ consist of the eight pairs
oz, Bb, yc, bd, i, Be, vd, da. Let VY, = {c} s ""2 = {dll. Then wlﬂ Y, is

Hence F[\}/lﬂ \f;g] = F[0] = © according to a previous re-

]

the null set
mark. On the other hand F(wl) = F({cl(_) = {B,T}

and F(\Lre) = F(<dr)

L

v,% -
¥
{B, Y, © F which is a proper subset of @

Hence F(tl'fl) UJF (\lfg)
= «'foz,a, Y, a}, so that F(wl)gj_l?(wg) is a proper subset of F[ wlﬂwg],

- Thus we lost the elegant duality of the De Morgan formulas which remain valid
when the signs U and ﬂ are interchanged. 1In order to restore this duality, we
ray introduce two other mappings H, teking subsets of ¢ into subsets ¢, and
J, teking subsets of & into subsets of ¥ The duality is restored in the sense
that the formulas remain valid when simultaneously with the interchange of J «nd
[, we interchenge ¥ with H, G with J, and << withD>.

The needed new definitions are as follows: © = H (y) is the smallest subset
of ® such that (C¢) x (Co)c Q. Here C¥ means the complement of ¥ in
T

end CP wmeans the complement of © in & . According to the definition of I

this is equivalent to saying that Cp = F(Cy). In other words

]
N
~—r

H(y) = CF(Cy) (
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It also gives rise to the following characteristic properties
(v) If © ecH(V) and g e C V¥, then (f,g) e

(Vi) If (f,g) e @ for all g e C V¥, then f e C H(¥).

Similarly ¥ = J (@) 1is the smallest V¥ e % such that (Cy) x(Cp) € Q.
zquivalently
J(9) = cCalce) (1.6)

axd we have the characteristic properties
(VII) If geCJ (p) and f e C o, then (f,g) ¢ Q
(VIIz) It (f,g} €0 for all f e C¢, then ge O J (0).

vy = A B () (1.7)

(v = M7y (1.8)

It will obviously be sufficient to comsider (1.7), for which we give two procis,

one based on formula (1.5) and Theorem 1.1, while the other is based on the

characteristic properties (V) and (VI).

|
IJ
H
19
ct

g
O
O
_-b
=

et Y, = C V. sothat ¥ =C ¥, Then by (1.5)
) =crFielv )l = cFIUCy)l =cF U,

But this lest set, by Theorem 1.1,is the same as

CIiF@ Y] =Ucr () =Yer(cvy) = UE (v),

wnere, of course, the last step is taken in accordance with (1.5 ).

Second proof. ILet f e CH (ﬂ\ua). Then by (V), if g ¢ c[ﬂwa], we must

heve (f,g) ¢ Q. That is, (f,g) € @ for all g ¢ cifw,) = ylce v ). In particuler

(f,g) e @ forall g e C v ‘for each & € A, That is, by (VI), £ ¢ CH <¢_)f for

o 04
each & € A. Hence, f ¢ fJCH (wa) = ¢c[UH (Wa)]. Hence we have proved that
CH (flv)ex clU H (5)] (2.9)
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Vext let feC[UH(%Q] =ﬂ[CH(%QL Hence feC}{Nb):mremh a € A.
By (V), if ge C ¥, ‘then (f,g) € Q. That is, (f,g) € @ for all g € C Vo
Fence (f,g) € 0 for all g elC Yy = C[{7~Wa]' Hence, by (VI) f e CH [ﬂwa],
Hence C [iY H(wa) le cCHEIN \,'Ia]. Combining this result with (1.9), we have
1 () wa) = c[UH (\lfa)]

which is equivalent to (1.7)

Q

Theorem 1.6 .

JE (WIe v - (1.10)

H J ()< o (1.11)
Proof of (1.10) ILet © = H(Y) end u;* = J(¢). We need to prove that I!J*C R

From (1.5) we have C¢ = F(C¥) and from (1.6) we have C W* = Gfe?] =
G {F(Cl}/)} . Hence, from Theorem 1.2 , we find that C \J;* D C Y. Hence \'I*c:\li as
desired.
The proof of (1.11) is similar. _
Theorem 1. If yye=i,, then H (\l/l).:‘;.? H(xyg)
If 9, <=0, then J (cpl) = ,j'(cpg).

Proof. Since ch; wg , we have wl}1 we = wl. Hence, using Theorem 1.5 we
have H ( wl) = H (wlmg) = H (wl)UH (\yg)gﬁ (\1;2), This establishes the first
pert of Theorem 1.7, ana the second part may obviously be proved in the same manner.

Theorem 1.8

HY, v Qo (v, (1.12)
Sl ) I (o) (1.13)

Proof of (1.1 2 ) By Theorem 1.k,
Fl floy ) > UF (¢ ¥)

Therefore, by meking free use of (1.5) , we find that



CHEMvy) = FLC(U = FIACy D UF(Cv,) =UcH (v,

= c[f] H(v,)] ’
Thus C H (U\ya):; clnx (wa) 1, which is equivalent to (1.12)
The proof of (1.43) is entirely similar.

Any one of these functions can be used to introduce a partial ordering among the
subsets of ¥ or ¢ which, in general, 1s quite distinect from the natural one
afforded directly by the relationship of setinclusion. For instance, we introcduce

. the relationship %’ or % by means of the following

Definitions 1.1. Two subsets wl and Wg of ¢ satisfy the relationship
ir < > 2 s Eel
v g ¥, or Vs % Wl if and only if K(wl) X (wg), where K may stand for
either F or H.

Similarly we may also contemplate

Definition 1.2. Two subsets @l and @2 of & satisfy the relationship

9 < > > : .
% % or 9, ¢ ¢, if and only if K (Ql)c: K (@2), where K may stand

for either G or J.

It follows from Theorems 1.3 and 1.7 that these relations are transitive and
reflexive, These definitions also afford a partial ordering of the individual
elements of ¥ or &, %Yecause an element of ¥ or & may always be viewed as a
subset of % or @ containing but a single element. OF course, it 1s possible in
particular instances that the set of order relations between indiwidual elements may
turn out to be wvoid.

Theorem 1.9 Let Wl and Wg be subsets of VY. Then

[(f,g) e Q for all g ¢ wl]m% [(f,g) e @ forall g ¢ v,] (1.13)
if and only if ¥, ?, e

Proof Suppose v, % ¥, Then, by definition, F(wl)cz F(Wg)- If nov (F,g)
€ Q for all g € ¥, we know from (II) that T e F (wl)c:ZF(w2). But from (I) arnd

the fact that £ ¢ F(w2), we conclude that (T,g) € @ as long as g € V,. In other

- 6 -8 -



words the assumption vy <%<1¥2 leads to the implication (1.13)

Next, let us start from (1.13) as our assumption. Let f be an arbitrary
element of F(Wl). Then, by (I), (f,g) e O for all g ¢ ¥,. Then, by our

assumption, (f,g) € @ for all g € Ve But, by (IT), +this means that f ¢ F(wg)g

<

Hence, we have F(wl)cz F(we), vhich duly interpreted, means that ¥, o V..

Corollery. Let g, and g, be elements of . Then [(f,gl) e Q]=>

- 3 . . . <
[(I,ge) e 0] if and only if g 7 &
This follows immediately from Theorem 1.9 Dby teking wi = {éi}3

the subset of § consisting of the single element. g, (i =1 ordnd 2).

<

We ’ <4 1 1 i Fod < { }
e use g, o &, , of course, as {n sbbreviation for {;1}- F 18a( »

Definition 1.3 An element g ¢ ¥ 1is said to be an upper bound in

with respect to if and only if g g for every g e V.
(with tto F ) if and only if ; T ¥

. *
Definition 1.4 A set @ e ¢ is said to be a G- core of ¢ iff

*
(i) G (9 ) is not vacuous

(ii) If ¢ 1is any subset of @ such that G(¢) is not vacuous, then
L
Qi @,
The set @ mey not have a G- core. However, if it does, then the core is
* *x .
clearly unique. In fact, if ¢ and ¢ are cores of ¢ , we see from (ii)

) * *H¥ i * * *%
that © << o and ©® ¢= ©, sothat © = ¢ .

Theorem 1.10 If él and é2 are upper bounds in ¥ , then F(éi) = F(ég)a

Proof.  Since él ; ég, we have, by Definition 1.1, F(él)C:F(ég) end
o = < = - ’ S V= (5 ). ; .
since g, 3 g Wwe also have F(bl).J.r(gE) Hence the theorem

Theorem 1.11, The G-core of @ exists if and only if ¥ has an upper

tound with respect to F. If g 1s en upper bound in ¥, ‘then F(g) is thke

* N *
G-core of & . If the G-core of ¢, denoted by ¢ , exists, then ale ) is

A

2
3
.

the set of all upper bounds with respect to F in

s
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Proof. Iet g be an upper bound in ¢. Then F(Z) is a set © such that
S . * -
G(e ) dis not vacuous. For G(o ¢lF(g)l, in accordance with Theorem 1.2,
contains the noa-v TI } Let ¢ be an arbitrary subset of & such
that G(®) = ¥ is not vacuous. Siace vy Ir and g was assumed to be an upper

- - -
bound, we have g ’\F g for all g e V. Hence F(g)c< F(g) for all g e V. Thus,

by Theorem 1.2, ®c= F[G(9)] = F(v) (1.14)
{

I
__);ﬁ\
©
Il

By Theorem 1.1, F(y) = F[ J’ {g}] F(g), which, since

?(g) hes alresdy been vroved to be conteined in F(g) for all g e ¥, leads to
- N B - * .
g). Hence from (1.14), we have 0 < F(g) = © . Hence
O] is the G-core of 0,
* . % %
Conversely, let ¢ be assumed to be the G-core of ¢ and let ¥ =G(o ).

- * - *
et g ey . Then, %~ Theorems 1.3 and 1.2, we have F({ g ]():D Fly ) =
x

* - ,_J'_“
F[G(\p)zz@ Also, since @ is the G-core of @ and since CG[F(§y gp )X ff-

is not vacuous, we see from (ii) that F{ 1( )Ccp Hence F (Wf }) = cp',

1T g 1is an arbitrary element of ¥, the set .9 = { ‘g is such that G[e] =

G{ 7( ‘\fg\[L )i *{g} is not empty. Hence, by (ii), cpC.cp . Thus { })Qﬂ E ).
Hence, by the definition of ?; , we must have g <F é . Since g was arbitrary,
this means that g 1s an upper bound as we desired to prove.

Toeorem 1.12.  Let v, -and {, be subsets of . Then, itf Y ﬁ’ L2

[(f,g) € Q for all g € C \Lrl] =»[(f,g) € 0 for all g € C \"2] (1.15)
Proof. Suppose Wl?{ ¥, Then, by definition H(mLfl)DH(\lfg), Hence, takirg

complenents FI\\; Ye=CH( vz) If now (f,g) € O for all g e C Y, We know from
(VI) that T ¢ CI—I(‘Jl)C_jCH(\yg), But from (V) we conclude (from the fact that
feCH (*iqg) ) that (f,g) € & as longas geC Y- In other words the assurption
>
H

¥y ¥, leads to the implication (1.15).
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Next let us start from (1.15) as our assumption. ILet f be an arbitrary
element of C H ( 15 )e Then, by (V), (f,g) € Q for all g e C ¥,. Then, by
assumption, we have (f,g) € Q@ for all g e C Voo But, by (VI), +this means

that f e C H (wg)a Hence, we have C H (q/l)c: CH(\{JE). Therefore H(\Ill)::)H(ljlg),

which duly interpreted means that vy ?{ Vo
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SOVE FLEMENTARY EXAMPLES.

i

3
EIJ
)
1

5 OF

°

2. OV THE EYTSTE

(2.1)

icted to a certain class W of admissible winds while

U of admissible controls. The cla U

I all real piecewilse continuous functions of the real variable x

[4]]

D

[
et

voich map some given interval R containing the origin (the constraint
The class W is a given collechtion of admissiviz

[C,T] and whose range is [-@,0]. It is assumed that W contalns

all piecewiss constant winds (whose domein and range are restricted as ebove) azd
sure that system (2.1) satisfies sur?

that it is, moreover, recsonable enough to ins

cient conditions for the existence and uniqueness of solutions.

Let R be the interval -A < x < A. We shall show that the core of R

This will be done by showing that U has an upper bound. The core of

exists,
R will also be compused.

ILet
-1 forall 0<x<1

™
1l
(@]

wx)= ¢ 0 for all
+1 for all -1 < x< 0,

We shall show that U is upper bound in U.
Suppose Tirst that «a< 1, Consider the system % = w(t) + 4(x). Let

%, >0, x € R Thea w(t) + ﬂ(x(t,xo,w,ﬁ)) < O for any weW so long as
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x(ﬁ,xo, w, 1) > 0.« Moreover, the trajectory x(t,xo,w,ﬁ) cannot cross over into
the negative half of R, since 1f it were €o do so the direction of the vector
field would be reversed. Hence

0< x(t) <x, forall 0< t < T andevery weW.
Therefore, (QAJcQ(R). Similarly [—A,CDcfQ(ﬁ). We also have x(t,0,w,u) = O
, Tor all 0< t< T and all w e W. Hence, 0eQ(u). Thus ReQ(u) whence

R = Q(u). It follows that Q(4) contains every uniformly T-tame subset of R

and therefore U is an upper bound, and R is the core of R.
Consider rext the case vhen « > 1. There are two possibilities:

either (a-1) T >A or (w-1) T< A. If the first inequality holds it is not
hard to show that Q(u) =¢ for every u in U. In fact, let x_ ¥ O and
let u be arbitrary. Consider the system

X = v, (t) +u (x) s x (0) = X, (2.2)
where W, (t) = Q@ We have

Xx=a+u> o-l1,
vhence

x {T) x (0) = x (T) - X, 2 (a-1) T
2n6¢ therefore

x(T) > X, (x-1) T > (@-1) T > A.
It fdlows that Xy # Q (u). We have thus shown that [0,A]] Q (u) =g for
every u ¢ U, Now taking X, < 0 and WQ (t) = - a we obtain, in a completely
analogous fashion, that[-A,0[{} Q (u) =g for every u e U. Combining these
two facts we get that Rf%Q (u) = ¢ for every u € U. In other words, the given
system admits no wniformly T-tame set. Such a system plays no role within the

context of the minimax problem.

‘We may therefore assume, without loss of generality, that

-6-13 -



(c=1) T < &,

Provosition 2.1 Let I be tue interval [~& +(c-1) T, A -(x-1) T]. Toen

Q ()< I for every u e U

Proof. The srgument of the preceding paragraph shows that (R-T)NQ(u) = o4

for every u ¢ U, The result follows.

Preposition 2.2 I = Q (u).

Proof. Let X € I, let w be an arbitrary member of W and let

Then for all t ¢ T one hes
wit) +u (x(t)) =w(t) -1 < a1,

whereas for all + € T  one has

w(t) + 2 (x(t)) = w(t) +1 > -o + 1.

t -

T = g .l‘, -b+ 't ) -t = g.l-b._ 't
T € T t el

- o . aa
Then for every + € T one has

0<x(t) = x(t7) + _f [w(z) + @ (x(2))] &=
Ti[0,t]
< x(t7) + [; (1) & 7
< x(t) * (a-1)7 < A
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> x(t7) +Jﬂ (- +1) d 7
++

> x(t7) +(~x+1 )T > -A,

Hence x € Q (v). This completes the proof.

Proposition 2.5 Let «@>1., Them U is an upper bound in U  and

4]



Here w = w(t) 1is restricted to a certain class W of admissible winds, wvhile

d to the class U of aamissible controls. The classes W

<
I
o
N
"
~—
[
Ui
5
[
U
!
H
)
o
ct
[©)

PR T SR . ) P Y in e
0y bhoundsd in the gense that

3

[

|[u(x)[< 1 for all ue U, (2.4)

these inequalities holding true for all t and x for which w(t) and u(x) are
defined. '

The class U is the class of all real picewise continuous functions of w.l.
real varizble x defined in some given rectangular region R (the constraint set)

satisfying (2.4). We are not as specific about the class

(@]
(@]
&)
Ci
)
b
e
i
[
o
ct
[
[
O
3
FJ
(081
F_J
]
o
jm]
Qs

W  except to reguire that it be reasocnable enough to insure that system (205)

tisfies sufiicient conditions for the existence and uniqueness of solutions.

[

[

We do, however, specifically assume that the class W contains the class of all
piecewise constant winds whose range lies in the interval [- Q,a]. The domain
of all winds is 0<t < T, where T 1is some preassigned positive constant.
The region R 1is defined by wmeans of inequalities such as le[S A, |x2[§ B,

where A and B are given coanstants.
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For the time being we shall restrict

Iet
-1 for all x such that
u (x) = 0 for all x such that
+1 for all x such that

We shall show that u(x) is an upper bound in U.

let w be an arbitrary (but fixed) wind in W

k) = w(t) + u(x)
7
Let -B<x; <B. Iet J be the interval

our attention to the case when

o< 1.

and consider the system

(2.5)

J={(O,x2) | -ngggBI(.

The vector field defined by system (2.5)

J. In fact,

lim %, <0 ,

- 0+
Xl 0

X~ X0
2 72

is discontinuous at every point of

1im %. > 0.

x,— O~

In other words, the vector field of (2.5) reverses its direction across J.

Eence a trajectory of (2.5) which passes through (O,xg) at time

e “stopped" there for all subsequent time.
sequel.
Tet ueU and let (&, 1) € Q (u).

wo(t) € W and let

_6..]_7_

Suppose first that

will

This fact will be employed in the

£ >0, Let



>4
—

o
~—

il

Xl(t:g;ﬂywoyu) Xl(t) Xl(t,é,n,wo,a)

ct
S—
1l

X;_)(t;é;ﬂ;wo;u) }Eg(t> Xg(t;g)ﬂ)wo:a)'

As long as both xl(t) and il(t) are positive, we have

a xl(t)/af =w(t) +ulx) >w(t) -1=4 il(t)/at.
Let [O,tl) be the largest subinterval in [0,T] throughout which xl(t)>0;
let [O,tg) be the largest subinterval in [0,T] throughout which il(t) > 0;

let t,= min(tl,tg). Then, for every e[O,tB] we have

> t
o< xl(t) = & +‘/; [w(t)-1]a =
t
<t [ ol ()a © = (8) <A
It follows, in particular, that t5 = tg. Hence
0< il(t) < Xl(t) <A for all t €[0,t,] (2.6)

and therefore, for all t e[O,tg] s
t t

xg(t) = +d/; xl(T)d T L +‘/; Xl(T)d T = xg(t) < B.
soreover, 4 ig(t)/ﬁ t > 0 throughout [O,tz), and since 7 > - B we conclude

that i&t) >-B for all t e[O,tg). Therefore

-B < ig(t) < B for all 1 e[O,tg]. (2.7)

It t2: T, one now has

(il(t), ig(t))e R for all t <[0,T]. §2.8)

If t, <T then il(t) = 0 and ie(t) = ig(te) for all t > t,. This together

with (2.6) .and (2.7), implies that (2.8) still holds. Since these considerations

apply to eny wind w_ e W it follows that (&,1) € qQ(u).
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Proposition 2.4 Q(u)e=Q(u) for every u e U,

Proof, Tt has been shown that if (£,n) € Q(u) and £ > 0 then
(g,m) e Q(u).
The case when ¢ < O is analogous. Moreover, JeQ(u). This completes the proof,

Corollery 2.1 U is an upper bound in U.

* * * -
Proposition 2.5 Let w (t)= @ 1let ¢ > 0; let xi(t)=xi(t,§,n,w ,u), i=1,2 .

!
]

(5 (t), x, (8)) € B for all t ¢[0,7] then (&,n) ¢ Q(d).

Proof. Let weW; let xi(t) = xi(t,g,n,w,ﬁ), i= 1,2,

If (Xl(t)’ xg(t)) intersects J at some time +t. it remains "stopped” there

-

J

for all subsequent times. We therefore need concern ourselves only with the interval

[O,tJ). For all t in this interval one has
*
d xl(t)/dt =w(t) - 1< a-1=4d X, (t)/at.
Hence, for all t € {O,tJ),

*
0<x (t) < x(t) <4,
whence
£) < x(t) < B
Xg< ) < Xe( < B.
Morever,
'Bfﬂfxg(t):
whence finally
(&,m) € Q ().

This completes the proof.
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1
Proposition 2.6 Let w,(t) = - a; let & <O0; let xi(t) =xi(t,§,n,w%ﬁ),
¥

1

1 -
i=1, 2. If (xl (), X, (t)) e R for all t €[0,T] then (&,q) € Q ().
FProof. The proof is analogous to the proof of Proposition 2. 5.
L SA - x, < B }
We shall use Proposition 2. 5 to determine Q N R,

+
Let R  De the set {(xl,xg)l 0< x

Consider the system

Xl = -1
%y = X (2.9)

Clearly % <O and %, > O throughout R 1f (E,m) € R" then the solution

(xl(t,g,n), %, (t,e,m)) of (2.9), when continued in the direction of increasing
t, can only reach the boundary of R+ on the set J or on the set

K:{(xl, B) | 0<% < A}.
Cne has

Xl(t:g)n) =& +( o-1 )t

xg(t,g,n) =+ et +(1/2)( a—l)’czf

The solution of (2.9) passing through the point (0,B) 1lies on the parabola

X2
B + 1

*2 er

Trerefore, if n < B+ t/2 (a1 ) then (%, (t,€,m), %, (£,6,n)), when

1l

continued in the direction of increasing t, will reach the set J. All such points
- - +

ere clearly in Q(u), To get the remainder of Q(u)fYR', continue the solutions of

(2.9), starting on K, for a time interval of length T, in the direction of de-

creasing time. One has

x,(-T,&,B) = g-(a-1) T

Xe(_T)é)B)

(2.11)
B-¢ T H{1/2)(a-1) 2
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Elimination of ¢ yields

x5 (<T,¢,B) [B+(1/2)(1- @) T‘gj' -Tx (-T,¢,B).

1}

et B+(1/2) (1-a) 2 B. Let L be the line x,= -Tx, +B. On K we

heve O< x, < A. Hence in (2.11), 0< ¢ <A, and (1- Q)T < X (-17,¢,B)

1
< A+ (1-)T. However, since we are restricted to R, we must limit our
attention to those points of L which satisfy

(1-a)T < x, < A,

1

The point P on L whose abséissa is (1-Q)T has ordinate B+(L/2)(a-l)T2,
Tnis point also lies on the parabola (2.10); in fact, this is the point obtained
by solving (2.9) sterting at (0,B), in the direction of decreasing time to the
point where t= -I. If P ¢ R then

s - o@nE = {(enL e’ [ ng Br 2 /2 (1) }

If Pe R+, let Q 7De the point at which the line L intersects the set
K;ﬁg U %;K5 (Figure 1). (The point Q mzay be on KIKQ or on K;K;). In
this case S+ is the set obta%qed by deleting J from the closed set bounded by
the curve BOAl QPB (Figure 15. Let S be the set obtained by reflecting st
through the origin. Let S=S—LfJLJS+ .

Proposition 2.7 S dis the core of R.

Proof: Ey definition, S = Q(I)JR. The fact that S = Q(E)}{} R follows

in completeianalogy from proposition 2.6, This completes the proof.
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The shaded region is the core of R

Figure 1
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CHAPTER 7



e ____J} [ TR . T N O Ty T .

1. COMPARABILITY OF THE SOLUTIONS OF TWO DIFFERENTTAI, EQUATIONS
OF THE SAME ORDER

We have previously indicated a method of partially ordering the controls
u e{J and we have shown that an important part of our problem is solved if we
can identify the upper bounds of these controls. To implement this procedure,
we need to compare the trajectories of the system under different controls. This
amounts to comparing the solutions of pairs of systems of differential equations
with respect to various criteria. 1In this and the next section we present several
theorems which we hope will be useful in this connection.

In this section the system is represented by means of a single differential
equation of possibly high order. It is always possible, at least in the linear
case according to a known theorem, to reduce the system to this form,if there
is but a single actuator and if the system is controllable at all.

Theorem 1.1 Suppose x(t) and &(t) are both of class <t on [0,T] and
satisfy the initial conditionms,

g(k) (0) = x(k) (0), k=0,1, *+ = * , n (1.1)
and the differential equations,

X(n+1) () =f[x(n) (t), « - -, X(h) (t), » « »»t}], h=0, = + +, n-1
(1.2)

R N OO MR O WS B )
Suppose, furthermore, that

cp{x(n),. _— g(h),‘ S >f[x(n)) coee (n) L £] (1.4)

2



as long as

é(h) > X(h), for h = O’o . ., n - l (105)
Then

é(k)(t) > ) (t) for 0<t< T and k=0, 1, + - , n.

Proof. By Taylor's theorem with the remainder

n-k
g(k)(t)_x(k)(t)=z {g(m)(i?_x(m)(o) }tz+ {g(nﬂ)(ﬁ*)_x(nﬂ)(t*)}%_kﬂ
£=0 : |

(n-k+1)t

*
where t is a suitably chosen positive number not greater than t. According

to (1.1), the first (n-k+l) terms in the above sum are non-negative. If

they are actually positive, then the whole sum must be positive for sufficiently
small t > O, since the last term is an infinitesimal of higher order than any
of the other non-vanishing terms. If, however, the first (n-k+1) tefms of the

above sum happen to vanish, we have
k+4 k+£
g( )(O)=X( )(O):£=O) 1, + ¢ ,n-Kk
and in particular (by taking £ =n - k),
J . n \- n .
o oo g( )(o) = x-(: )(o‘) ‘ : (1.6)
We also observe that the last term in the above sum differs from

{§<n+1)(o) _ X(n+l)m} ekt

(n-k+1):
by an.infinitesimal of order higher than tn-k+l. This is because of the fact

+
that £(t) and x(t) are of class ML, Hence, if t is sufficiently small,

égk)(t) - x(k)(t) must have the same sign as

¢ (1) (o) - x(n+l)(o) - ole™(0),- - - ,68(0),+ + +,00-21x™(0), + %P (0)u001,



which, by (1.6), is the same as

© [x n)(o),. . g(h) (0),* + +,0] - f[x(n) (0),* * -, x(h)(o),' - -, 0]

But the sign of this latter quantity is positive bécause of (1.1) , (1.4) and
(1.5). Hence, we have proved that in all cases there exists a positive number &
such that
ey > B 4y sor 0<t s (1.7)

and k=0, 1, 2,° ¢ *, n.

If 8 z T, there would be nothing more to be proved. We therefore assune
in the sequel that & < T. For the sake of brevity we let z(t)=t(t)-x(t). Then
(1.7) means that =z(t) and its first n derivatives are positive for 0 <t = 8.
We wish to prove that they are also positive for & <t = T. If this were not
true, one at least of the functions Z(k)(t) would have to vanish on the interval
(6,T] at some point Ty (k=0,1,+ « -,n). But, if k <n, we can then say that
z(k+l)(t) would have to vanish on the interval (8,T] at some point tpn < e
For z(k)(a) and z(k+l) (8) are both known to be positive while g(k)(tk) = 0.
Hence z(k)(t) would have to have a maximum at some point tk+l interior

to the interval (S,tk). At such a maximum, we, of course have

2 (k+1) (tk+l) = 0.

It follows that, if the theorem were false, there would exist a point

t_ on (8,T] such that

n
L2) (5 ) =0 (1.8)
2(8) (t) >0 for 8 st<t ‘ (1.9)
22 (1) - 1) - P (5 >0 %(1.10)

h=0,1, 2, ++ ,nl
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From (1.8) and (1.9) we have z(n+l)(tn) < 0. Hence from (1l.1) and

(1.2) we have

z (n+l)(tn) - n+l)(Jr.n) - x(n+l)(tn)

(2)

= 9l (t );° °°:§(h)(tn))° ‘ -,‘bn]-f[x(n)(tn),- ° ':X(h)(tn):' * 'stn]go-

n

From (1.8), we have g(n)(tr)=x(n)(tn), Hence, we have shown that

Y

e im, (n),, . o (n (h),. -
of 5 '(tn),o o o LEN )(tn),- . ,tn]é I[x( )(tn),- o e ,x )(tn),- - et d

But, in virtue of {1.10), this is a contradiction of (1.4) and (1.5). The
theorem folloﬁs at once from this contradiction.

The hypothesis, that the inequality (1.4) should hold as long as the
inequalities (1.5) hold, cannot be replaced by the less restrictive hypothesis
that merely

@[x(n),a . ., x(h),- . o ,t] >>f{x(n),- o ., x(h),- . e L] (1.11)

To show this we consider an elementary example in which n=l. (The case n= 0
is also covered by Theorem 1.1, but in this case the set of the variahleg x(h)
for h=0,- o« . , n-1 becomes vacuous, so that the weaker hypothesis (1.11)

coincides . with the hypothesis of the theorem embodied by (l.4) and (1.5)) .

Our example with n =1 1is as follows:

et ok, €, t)=-(x+B)E-ape+e

and f(x,x,t) = - (#B)x - a B x,

where @, B, and € are all real non-zero constants and ¢ is positive. We are thus

concerned with the equations & + (G +B) & +aB E =¢ and

X+ (a+B) x +aBx=0.
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Tt is seen that the hypothesis (1l.4) - (1.5) is fulfilled if and only if
o and B have opposite signs, whereas the weaker hypothesis (1.11) is fulfilled
in any case. We comsider initial conditions x(0) = E(0) and x(0) < £(0).For
brevity, we let Z(t) = &(t) - x(t). Then Z(t) satisfies the differential
equation Z + (#B) Z + B Z = € and the initial comditions Z(0) > 0, 2(0)=0 .
Evidently "2(0) = - @ B Z(0) + e. Hence 2(0) < 0 if « and B have the same
sign and Z(0) > ¢ / (¢ B). Hemee, in such a case 21t) = Elt)-x{t) is negative
for all sufficiently small positive values of t. Since Z(0) = 0, the same is
true for Z(t) = E(t) - x(t), contrary to the conclusion of the theorem. On
the other hand, if @ and B have opposite sign, it is obvious that both'
é(t)-i(t) = %(t) and £(t) - x(t) = Z(t) are positive for sufficiently small
positive +t in accordance with the theorem. The theorem also asserts (in case
o B < 0) that these differences are positive for all t > 0; but this fact is
not quite so obvious if « + B > 0, even though the egquations are, of course, easily
integrated.
Theorem 1.2 Same hypotheses as in Theorem 1.1, except that (1.4) is médified

to read

as long as (1.5) holds.

Then g(k)(t)z x(k) (t¢) for 0<tsTand k=0, 1,° * * , L

Proof. Let n(t,e) satisfy the differential eguation

n'(n+l')(t,e) = cp[n<n)(t,e),- ..y, n(h)(t,e),- o« ,t] + ¢ and the initial

conditions n<k)(0,e) - ¢®)(0) x(k)(o) for k= 0, 1,* * *, n.
Then, by Theorem 1.1, n(k)(t,e) > x(k)(t), for k = 0, 1,° o o ,n, and for te,T],

if e > 0. It is also known frem theorems on the solutions of differential

equations containing parameters that



lim {k) (x)
1 (t)€> = £ (t)°

Hence, passing to the limit irn the above inequality, we get g(k)(t);x(k)(t),

as desired.

2, COMPARABILITY OF THE SOLUTIONS OF TWO SYSTEMS OF DIFFERENTIAL EQUATIONS

In this section we prove some theorems similar to those of the preceding
section. But they apply directly to a pair of systems of differential equations
rather than to a pair of single differential equations. We write the systems

in the form

= @(t,t) (2.1)

[72 234
|

and

x = f(t,x) (2.2)

where ¢, x, ¢, and f are n-vectors, while @ and f are continuous and
Iipschitzian with respect to ¢ and x respectively. We consider in connection
with these systems a scalar function H(x) of class ¢l in the components of x.
Starting with solutions of (2.1) and (2.2) satisfying the same initial
conditions,

x(0) = £(0) = g (2.3)
we wish to compare H [£(t)] and H[x(t)] for t > 0. If we let
Q@(x,t) = HX(X) o (t,x) and Qf(x,t) = Hx(x) f(t,x), it is clear that Q@[g(t),t]
is the rate of increase of H[&(t)], while Qf[x(t),t] is the rate of increase of
H(x(t)]. Hence it might be conjectured that H[x(t)] = H[e(t)], if, for all
x and t, we had

Qp(x,t) > Qplxst) (2.4)
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or, in other words, if Q@(x,t) -Qf(x,t) were positive definite.

This turns out not always to be true (as we will show immediately below by
means of a counter-example. ). This is because the two trajectories £(t) and
x(t) may be quite distinct. Hence we will need to replace the hypothesis (2.4)
by a more stringent one. Before stating and proving the main theorem, we first
present our counter-example in order to establish the necessity for such a more
stringent hypothesis.

Iet us consider the two systems

E=ae f=Bt+ T (2.5)
and
x=ax+by,y=cy (R.6)

together with the initial conditions

£(0) = x(0) = x_, n(0) = y(0) =y, (2.7)

We are here temporarily using (&,n) and (x,y) to represent the vectors
previously denoted by ¢ and x respectively, n being equal to 2. If we

now take H(x,y) =(L/@(x2 + yg), we have Q¢(§’n) = §2+ B e+ T‘nej

and Qf(x,y) = g x2 +bxy+ec y2 . Then

2 2
W(6y) - Qplxyy)=(a - a) x™ + (B-d) xy + (v~c) ¥
is certainly positive definite if a>a, vy > c¢ and IB-bI is sufficiently
small. These conditions are fulfilled if we assume that

y>c>a>a, B=0bfo0. (2.8)

Both systems are easily integrated. The solution of (2.5) is

E=x_ e s n=[yO-BXO]e vE, BX, e OF (2.9)
o=y a-y



while the solution of (2.6) is

0 ot vy =y eCt. (2.10)

‘From these explicit solutions and from (2.8) we see that

P x,

He(t),n(t)] = o(e 2Tt), except when y - o = 0. But

He(t),n(t)] = o(e 2%, if yo-éazg =0and x_ £ O
(Here we use f(t) = 0(g(t)) to mean that £(t) and g(t) are defined for ¢
sufficiently large, that g(t) # O, and that tlf? . £(t)/g(t) exists and
is not zero. This convention is more strict than the one sometimes used, which
is merely to the effect that f£(t)/g(t) is bounded). In the case cited above,
B x

where y_ - —=2 -0 and x_ # 0, we also have y_ # 0, since B # 0. Hence, we

e~y

see from (2.10) thet Hix(t),y(t)] = o(e2°t)

. Since ¢ > ¢, it is evident
that for solutions starting at any point of the straight line (a-v)y-Bx = 0,
except the origin, we must eventually have H[x(t),y(t)] > H[&(t),n(t)]. This
is contrary to the conjectured theorem.
Theorem 2.1. ©Suppose that

Qy(6,t) > Qp(x,t) (2.11)
whenever

H(¢) = H(x). (2.12)
Then the vector functions £(t) and x(t), setisfying (2.1), (2.2), and (2.3)

for 0= t s T, have the property that

Hle(t)] > HIx(t)] (2.13)

for a1l t ¢ (0,T]




Proof. Let w(t) = H[&(t)] - HIx(t)]. Then according to (2.11) and (2.12),

w(0) = Q@(xo,o) - Qf(xo’o) > 0. Therefore, since w(0) = 0, there exists a
positive number & such that w(t) >0 for 0Kt £d. If © 2 T, there is
nothing further to be proved. We therefore assume from now on that 0 <9 < T;
and, of course, w(d) > 0.
If the theorem were false, there would exist a number t* €(5,T] such that

w(t*) = 0 and such that

w(t) >0 for t ¢ (5,t*) (2.1%)
Since w(8) > 0, there would have to exist numbers t TDbetween & and t* whefe
w(t) is not increasing; for otherwise w(t*) > w(8) > 0 contrary to the def-
inition of t*. For such a t we would therefore have simultaneously -
W' (E) = 0 [£(E),8] - Qulx(£),8] "s 0 and w(E) = H[£(E)] - E[x()] >0, the
latter following from (2.14%). We thus have a contradiction of the hypothesis
expressed by (2.11) and (2.12). From this contradiction, the theorem is
established.

Theorem 2.2. Suppose that

QlEst) 2 Qp(xst) (2.15)
whenever

H(E) z H(x). (2.16)
Suppose also that the two vector functions £(t) and x(t) satisfying (2.1),
(2.2), and (2.3) for O st s T have the property of not simultaneously
passing through a point where the vector Hx(x) vanishes. Then

Hle(t)] = H[x(t)] (2.17)

-7-9 -



for all t ¢ [0,T].

Proof. lLet € be a positive parameter and consider the two systems

I
1]

E=0_(t,8) = o(t,t) + e H_ (¢) (2.18)

and

X fe(tzx) f(t,x) - ¢ Hx(x) (2.19)
and the vectors E(t,e) and x(t,e) satisfying (2.18) and (2.19)
respectively and the initial conditions,

£(0,¢) = x(0,¢) = Xy (2.20)

If ¢ is a preassigned positive number, one knows that these vectors will be

defined for Os t s T - o(at least, if ¢ is sufficiently small) and that
Lim
€0 £(t,¢) £(t),

uniformly for O £t € T - o. By hypothesis the two vectors Hx[g(t)] and

U x(t,e) = x(t), (2.21)

Hx[x(t)] never venish simulteneously (i.e. for the same value of t). Hence,
if € is sufficiently small Hx[g(t,e)] and Hx[x(t,e)] can never vanish
simultaneously for O£t s T - g¢. To substantiate this last statement, we
observe that otherwise there would exist sequences, €5 € = and

tl, t. . . . such that en—>O , 0=t = T- ¢ and such that

2

B Le(s e )] = B Ix(t,, ¢ )] = 0. (2.22)

N
n’ n
From the compactness of the interval [0,T-0] we may also assume, by confining
*
attention to suitable subsequences if necessary, that tn->t , Wwhere
* o
0t < T-g. We now omit numerous details regarding the passage to the limit

in (2.22). Suffice it to say that the uniformity in (2.21) and the uniform

continuity of HX in a suitably chosen region lead to the result that

HIe(s)] = B [x(t)] =0,

which contradicts the hypothesis. Hence, Hx[g(t,e)] and Hx[x(t,e)] can
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never vanish simultaneously, as already stated, at least if e is sufficiently
small.

It follows that {Hx[g(t,e)_] . Hx[g(t,e)] } and

Q{Hx[x(’c,e)] Hx[x(t,e)]} can never both fail simultaneously to be positive.

We also have

i

Qpe [5(8:€),%] = Qle(t,e),t] + e{HX[g(t,e)] : Hx[g(t,e)]}

and

Qp, [x(t,e),t] = Qulx(t,e),t] - e {Hxix(t,e)] B [x(t,0)
We thus see from (2.15) and (2.16) that we can confine attention to a
region in which
Qcpe[g’t] > Qfe[X,t]
as long as H[¢] > H[x]. Hence applying Theorem 2.1, we have
Hle(t,e)] > H[x(t,e)] for 0<tsT - o.
Passing to the limit as e —» 0, we thus find that
H{e(t)] 2 H[x(t)] for 0<t=sT- o
Since equality holds for t = O because of (2.3) and since ¢ is an arbitrary
positive number, we have
He(t)] 2z H[x(t)] for0st<T.

Finally, by continuity at t= T, we see that the theorem is true as stated.
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3. ON TE EXISTENCE OF UPPER BOUNDE FOR THE SYSTEM

¥ =h (%,x,t) +w + u

In this sechtion we wish to indicate the menner in which Theorem 1.2
may be used to generalize the work of the previous Progress Report on the
system X = u + w. We hereby consider a system of the form

% =h (%,x,t) +u +w (3.1)

bt

n which h(%,x,t) is monotone non-decreasing in x for each fixed X and t.
The system can also be written in the form

}OLX w2 h{xl,xe,t +u +w 3.2)

ct
t—t’
o
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ot
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ngeably withoat

We wish the motion to be confined in the rectaugle R : | X | =& and

"

| x, | =3 for % e [0,T]. The " comtrol u o= u <X1’X2) €U 1is subject
to various rastrichtions which may be used in the definition of U. The only

ong of thess couditions essential for the moment is the condition ! U [ I

Similarly the " wind " w =w(t) € W is assumed to satisfy the conditicn

We suppose we have a non-negative function k(xg) deTined for

!qu £ B and such that when the point (xl,xe) is iritially within the
iy lxl] N (xz) it remains trapped within this set for all
time duving the motion defined by (3.2) with 'u(xl,xo) replaced by

T (%, ,%,) where U(x ,xg) = - sgn x, for (xl,xg) outside the set J.

1
upposed to hold for any w € W and no matter how W in

3
3

)
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o
ke
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r
1
<&
‘ i
o
S
’.4
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421
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defined inside the set J, so long as it is such that u eU.
In the special case h(xl,xg) = 0 treated in the previous Progress

Report the set J could be the interior and boundary of the ellipse

bdl.‘><
nInd o
+
OIN
Ao [l V]
1]
=

where C 1is sufficiently small. We omit the proof of this fact. In the
previous Progress Report only the limiting case C — O was considered,

so that the set J was the line segment X, = 0, |x2| = B. 'This necessitated
the assumption that the class U contained discontinuous functions. But for

C >0, we can consider the class U as containing only functions that are
continuous in the interior of R and u might %be defined throughout the
interior of R as follows:

u = - sgnx

1 i A (%) < x| < A

u

- x / x(xg) if lel s x(xg).
In the special case where J is the interior and boundary of the ellipse

2

mentioned above A =._% JBQ - X, . The above definition then makes u

* continuous on the boundary of R as well as in the interior except at the
points ( 0, B ), where it is left undefined.

Iet u be an arbitrary control € U. By Q(u) we mean (as in previous
Progress Reports) the maximal subset of R that is controllable by u. We
shall now prove that Q(u)<= Q(u), or, in other words, u iiﬁ. Let
(io,xo) be an arbitrary point of Q(u). We then consider the solution

x = E(t) of the system

g = (P(E,vgyt) = h(E:E)t) +u(§:§) + W(t)

such that £(0) = x, end £(0) = x_. Since the initial point is in the
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controllable region, we have for all t € [0,T] and all w € W

le () | =3B, [g(t)|=4 (3.3)
We also consider the solution x = x(t) of the system

% = £(%,x,t) = h(k,x,t) + u(k,x) + w(t) (3.4)

such that x(0) = x, and x(0) = ko. If the initial point (ko,xo) is
in J, the complete motion is trapped in J under the control u by
definition of J. Hence (ko,xo) € () and there is nothing further to be
proved in thisg case.

Suppose therefore that the initial point is not in J. Then

lxll = |x| > x(xg) and initially u(%,x) = - sgn x,. We consider the case

x; >0 so that @ = - 1. If the solution [X(t),x(t)] ever enters J for

any t < T, it will be trapped there, nor can x, ever become negative without

1
the solution first passing into J. Hence, it 1s only necessary ﬁo consider
the system (3.4) with u = - 1. Since |u(%,x)| s 1, we see at once that
o(k,x,t) = h(k,x,t) + uk,x) + w(t) = h(k,x,t) - 1 +w(t) = £(k,x,t)

and moreover f(X%,x,t) is monotone non-decreasing in x. Hence, the hypotheses
of Theorem 1.2 are fulfilled and we find from this theorem and (3.3) that
x(t) s &(t) sB and %(t) s é(t) shA for O0stsT

We have already noted that in the case now under consideration x(t) > 0> -A,

and, since X(t) > 0, we have also x(t) z x(0) = x, % - B
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Hence [%(t), x(t)] e R for 0=t s T. The case in which x, 1s initially
ﬁegative can be similarly treated. Hence, in all cases in which

(io, xo) e Q(u) we have also (ko, xo) e Q(u). Hence Q(u)=Q(u), as
stated. U is an upper bound.

Note: Strictly speaking we have not used Theorem 1.2 in exactly the form
there stated. For the hypothesis there used was to the effect that

o(%,e,t) =z t(%,x,t) whenever ¢ 2 x. However, it is obvious that this
hypothesis holds if ¢(%,x,t) z f(k,x,t) for all %X,x, and t and if, in
addition,either ¢ or f 1is monotonic non-decreasing in its second argument.
Observe that it is not necessary that both ¢ and f should have this
property of monotonicity.

The theorems of Section 1 also enable us to prove that, if (io,xo) € R

and k_ > )\,(xo) and if the solution &(t) of the system,

E = n(E,E,t) - 1 +a =0ttt (3.5)

with initial conditions £(0) = X é(O) = io, remains within R for
t ¢ [0,T], then (ko,xo) e Q(u). In other words (ko, XO) is “in the core
of R.
To prove this we consider the solution of the system

£ = h(k,x,t) +u +w (3.5)
such that x(0) = xo,'i(o) ='i°. Here w is an arbitrary elememt of W, and
end u =u(k,x) =~-1 when %> A (x). Thus U s initially - 1. If the
solution were to enter J, it would be trapped there and there would be nothing
more to prove. Hence in the only case of interest % >0 and u=-1 as
long as the solution stays in R. Thus we are led to compare the system

2 = £(%,%x,t) = h(%,x,t) =1 +w (3.7)
with the system (3.5) . Since w s, we see that o(%k,x,t) z f(%,x,t),

and the monotonicity reduirement is also satisfied. Since, by hypothesis,
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Ig (t) | sA and | ¢(t) | sB for 0=t s T, we therefore have by

Theorem 1.2, x(t) = é(t) sA and x(t) s £(t) £B for 0=t s T. Moreover,
since in the only case of interest %(t) > 0, we have both x(t) z x(0) =z - B
and X%(t) > - A. Hence the solution of (3.6) under the given initial conditions
remains within R for the given time interval and this completes the proof.

A similar result holds if X < - x(xo). Thus the way remains wide open
for describing the complete core of R as in Section 2 (ii), of the previous
ProgresscReport, although the description will necessarily not be quite so
explicit because of the greater generality of the system here considered.

A further generalization which will probably work is not bo define J as
a set in which the motion would be permanently trapped but merely as a suitably
chosen set from which the motion(no matter what the wind w € W) could not
reach the boundary of R within the time T. This would free us from |

supposing necessarily that <« < 1.
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CHAPTER 8



1. ON UPPER BOUNDS FOR THREE DIMENSIONAL SYSTEMS.

We have indicated in our previous Progress Reports how to partially
order the admissible éontrols and we have shown that an important part of
the minimax problem is solved if we cen identify the upper bounds of these
controls. These ideas were extensively illustrated by means of two
dimensional examples. However, the usefulness of the notion of upper bounds
as well as the corollary notion of & core would be rather limited if it
were not possible to identify upper bounds for systems whose dimension is
higher than 2.

We have therefore expended considerable effort in the analysis of
various three dimensional systems, notably the familiar one with three zero
eigenvalues. Most of our attempts led to a dead end. In fact, not only
were we wnsuccessful in finding an upper bound, but we even came to consider
Athe very existence of such an upper bound as questionable.

Yet during the past week we conceived of a control function which appears
to have the properties we were searching for. A quick preliminary study
encourages us to believe that we have indeed come upon an upper bound for
the controllable system of dimension 3 with 3 zero eigenvalues. However,
the proof is still heuristic in nature and we prefer to postpone the
presentation of this "result" until an exact proof is available. At the
present time we would like to restrict ourselves to the remark that our
conjecture involves the definition of an upper bound for the 3 (i.e. n)

dimensional system by means of the time-optimal solution of an appropriate
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2 (i.e. n-1) dimensional system. If our conjecture turns out to be

correct, it will be discussed in detail in our next Progress Report.

2. REMARKS ON THE COMPARABILITY OF SOLUTIONS OF DIFFERENTTAL EQUATIONS.

In Section 1. of the eighth Progress Report were proved some theorems
on camparing the solutions of two differential equations of order, say n + 1.

The equations were written in the form

x(n+l)(t) - [x(n)(t),- .., x(h)(t),. .-, 1] (1)
and

N S L T2 WO B 2)

where h =0, 1,+ » - , n-1. Both f and ¢ are supposed to satisfy
hypotheses sufficient to insure existence and uniqueness of solutions in
appropriate regions starting with given initial conditions. In Theorem 1.2

the fundamental additional hypothesis was made that

@[X(n);‘ * ':g(h))"’ -5t] = f[x(n):' * Sx(h):' - 3t]

as ‘long as §(h) z x(h), for h=0, 1,» « «, n-1. We shall refer to this
as hypothesis Hl' Tt is clear that this hypothesis will be automatically
satisfied if

@[x(n),. . .,x(h) . .,t];f[x(n),. .. ,x(h),. .-t (3)
and if either ¢ or T (But not necessarily both) is monotonic non-
decreasing in X(o), x(l),’v' ., x(n-l) for each fixed x(n) and t.

We shall refer to this latter hypothesis, formulated in terms of monotonicity,
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as hypothesis Hé. It was found in Section 3 of the previous Progress Report

that hypothesis H2 was more convenient to use than hypothesis Hl’

Unfortunately hypothesis H2 is not likely to be satisfied in problergocf
significance. For example, & problem in the control of a Saturn Launch
vehicle leads to a differential equation such as

% = - ..022¢ + .200 - .006Q + V¥ ()

where V = ¥(9,5,9,t) will depend on the control law adopted as well as the
wind. This equation was obtained by eliminating all dependent variables
except ¢ from the third order system of equations obtained from the
Marshall Space Flight Center at Huntsville and using the numerical values
for certain constants obtained from the same source. One might then wish
to compare the solutions of (h) with the solutions of some such equation

as the Tfollowing:

Coo

v = - .00Z + .200y - .006y + a(t). (5)
where Q(t) is a bound for V; say, & lower bound, so that

¥(9,9,9,t) 2 at) (6)
Then assuming y(0) = ¢(0), ¥(0) = §(0), ¥(0) = 9(0), one might wish to
conclude that ¢(t) 2 y(t), &(t) = y(t), 8(t) = §(t) for t > 0. This
_conclusion would, however, be unjustified on the basis of Theorem 1.2; for
although the condition (3) is satisfied the right hand member of (5) is

not monotonic non-decreasing in both ¥ and ¥y (but only in ¥), while



|
|

nothing at all is known about the monotonicity of the right member of (%)
in ¢ and ¢ (without further knowledge of V). Thus hypothesis H, is

not satisfied. It is found, however, that a suitably chosen transformation
on the dependent variables reduces the equations to a form in which Thecrem

1.2 mey be used to obtain a modified result. Thus, if we set
= e (/D ana x = e (WONy 1)

we find that equation (4) appears in the form

ey

Pa b2 g .oni2 t 402502 g + e /Ny (&)

and that equation (5) appears in the form

L2 X

e 622 %+ L0712 k + 02512 x + e~ (/DN oge) (9)
since a(s) = vle/Py, (/e (g ), M (ks 25) £), 00
we also have - I , o

e~ (V/5)o5)s & (/PN y[(H/0) g,e(l/s)t(b(l/s) £),e Y/ (/9429 €), 81
Morever, the right hand member of (9) is monotonic increasing in both X and
x. In other words the hypothesis H, (and hence Hl) is fulfilled. Hence
Theorem 1.2 is immediately applicable to equations (8) and (9). We conrclude
that, if £(0)=x(0), t(0)=x(0), and £(0)= X(0), then x(t)st(t), k(t)s
E(t), %(t)sE(t) for t > 0. Interpreting these results in terms of (4)

and (5) with the help of (7) the following may be stated:

If y(0) = 9(0),5(0)=0(0),y(0)=5(0), then, for t >0, we must have



y(t) s o(t)
F(t) -(1/5)y(t) s &(t) -(1/5)0(t)
(t) -(2/5) 7(t) +(1/25)¥(t) = B(t) - @/5)o(t) +(2/25)0(t).

It is not clear what application can be made of these results.
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CHAPTER 9




1. THE CORE OF A REGION RELATIVE TO A SUBSET THEREQF.

The program outlined in the Sixth Progress ﬁeport (for initiating an
approach to the minimax problem by searching far the upper bounds in a ceftain
partial ordering of the control functions) has run into difficulties whenever
we have attempted to apply the idea to systems of order greater than two. This
has certainly been the case for systems with only one actuator and with a
finite allowsble region R. It just so happens that in such ceses there is no
reason to suppose that an upper bound need exist. We‘now wish to discuss and
illustrate a simple modification which will permit the ideas of the Sixth
?rogress Report to be retained for some systems of higher order.

‘ The modification consists, roughly speaking, in the preliminary abandon-
ment of any hope of controlling all points initially in R. More precisely we
make a preliminary specification of a suitably chosen region R*:: R and
define, for each V<& 1J, the set Q(V) to be the largest set of points in R*
(rather than in R, as previously) which are uniformly T-tame with respect to
R under V. With this modification, we define .Q(u) = Q({u}) and say that

h g e

u is an upper bound under the order relaticn é , Wwe can prove, as previously,

if and only if Q(ul) (:(Q(ug), just as we did previously. Again, if

that Q(U) is independent of the particular upper bound U considered; and
- *
we may thus call Q(u) the core of R(relative to R ). Evidently the core is

*
now always a subset of R .



We wish to illustrate the foregoing by considering a system of the form

% = h(%,%,x,t) +u +w (1.1)
in which h(%,%,x,t) is monotone non-decreasing in x and Xx. The systen

can also be written: in the form

5{1 = h(xl,xe,xy.t) +u +w
%y = %) (1.2)
k5 = X,

if we sel x3 =X X5 = %, and X, = X. In the sequel we use (xl, X5 x5)

and (&,k,x) interchangeably without further comment according to convenience.
We wish the motion to be confined in the rectangular parallelgpiped

R: [x | s & [xy| 5 B, |xg] s C4BY for te [0,7]. The region R'e R of

|
initial states is to be the rectangular parallelepiped, |x1| S A,|x2|§3,|x5[§ C.

The "control" wu= u(xi,xe,xj;t) et)?is subject to various restrictions which
may be used in the definition of t}. The only one of these conditions essential
for the moment is the condition |u(xl,x2,x3;t){55(t), where B(t) is a given
positive function defined for Os tsT. Similarly the "wind" w = w(t) e W is
assumed to satisfy the condition |w| s a(t) < B(t).

Parenthetically we note that our conception ' of the classesztj and W
is somewhat more general than that displayed in previous progress reports. We
introduce this generalization in order to take care of certain transformed

equations such as equations (8) or (9) of the Ninth Progress Report. For a
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bi-product of the transformation there discussed is a modification of the
classes I]'and W.

We suppose we have a non-negative function x(x2, x3) < A defined for
|x2[ s B and |x5| £ C+ BT and such that when the point (xl’x2’X3) is
in the set J defined by le| < x(xe,x3) at time t., (assuming that it
started at time O from a point of R*) it remains trapped within this set
for t st s T during the motion defined by (1.2) with u(xl,x2,x5,t)
replaced by ﬁ(xl,xe,xj,t), where ﬁ(xl’XZ’XB’t) = - B(t) segn x, for
(xl,xe,xj) outside the set J (but within R ). This supposition is
supposed to hold for any w € W and no matter how u is defined inside the
set J, so long as it is such that U cU.

Iet u be an arbitrary element oftl By Q(u) we mean the maximal
subset of R that is controllsble by u. We shall now prove that Q(u)cQ(u),

or, in other words, u< u.

let (io,ko,xo) be an arbitrary point of Q(u). We then consider the

solution x t(t) of the equation,

n(E,E,e,t) + u(e,&,6,t) +w(t),

v

=‘(P(.0_:;,.§,§,t)

such that ¥(0) = io, £(0) ko, £(0) = x_. Since the initial point is in the

controlleble region, we have for all t ¢ [O,T] eand allw e W

IE(t)] sA, | E(t)] 5B, le(t)] sc+BT (1.3)

We also consider the solution x = x(t) of the equation
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% = £(%,%,%,t) = n(&%,%,x,t) + u(X,%,x,t) + w(t) (Lik)

such that %(0) = io, x(0) = % x(0) = x. If the initial point (io,ko,xo)
is in J, the complete motion is trapped in J under the control u by
definition of J. Hence (io,ko,xo) € Q(a) and there is nothing further to
be proved in this case.

Suppose therefore that the initial point is not in J. Then
lel = %] > x(xe,XB) and initially u(x,x,x,t) = - B(t) sgn x,. We first
consider the case x.,> 0, so that U = - B(t). If the solution [%(t),x(t),x(t)]

1

ever enters J for any t < T, it will be trapped there, nor can X, ever become

negative without the solution first passing into J. Hence, in the case now

under consideration, it is only necessary to consider the equation (1.4) with

u = -B(t). Since |u(%, %, x, t)| s B(t), we see at once that

o(%, X, x, t) = h(%, %, x, t) +u(®, %, x, t) +w(t) 2z h(¥, %, x;, t) - B(t) + w(t) =
(%, %X, x, t), and moreover f(¥X, %X, x, t) is monotone non-decreasing in X

and x. Hence, the hypotheses of Theorem 1.2 of the Eighth Progress Report are

fulfilled and we find from this Theorem and (1.3) that, for te [0, T],

%(t) A

x(t)

A

E(t)
E(t)
£ (t) sC + BT

A

B

A
WA

x(t)

A

Moreover xl(t) = %(t) > 0> -A in the case under present consideration so that

X b'q

< A. And, since ¥ >0, ¥ z %(0) 2z -B, so that

£ B. Finally, since
kX z -B, x 2 Xp- BT 2 -C-BT, so that lx] £ C + BT. Hence, in this case, in which
x, 1is initially positive, [%(t), %(t), x(t)] eR for O = ts T and so

[io, io’ x] eq(u).
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The case in which x is initially negative is treated as follows:

1
Here, we have initially u = +pg(t). If the solution .['}'c(t), x(t), x(t)]
ever enters J for any t < T, it will be trapped there, nor can X ever
become positive without the solution first passing into J. Hence, in the
case now under consideration, it is only necessary to consider the equation
(1.4) with U =+ g(t). Since Ju(%, %, x, t)| s p(t), ve see at once that

CP(SE: X, X, t) = h(if, X, %, t) + u(SE: X, x, t) + W(t)

h(%, k, x, t) + B(t) +w(t) = £(%, %, x, t),

[

and moreover f(%, %, x, t) is monotone non-decreasing in X and x. Hence,
Theorem 1.2 of the Eighth Progress Report, together with (1.3), shows that,

for te[0, T],

%(t) z ¥(t) = -A
x(t) =z E(t) = -B
x(t) z £(£) .z -C-BT

Moreover :xl(t) = ¥(t) < 0 < +A in the case now being considered, so that

< +B, so that |%| = B. Finally, since

o

< A, And, since X<0, ¥ < %,

X<B, x<x.+BDsC+ BT, sothat |x| s C + BI. Hence, in this case also,

0
in which x, is initially negative [x(t), x(t), x(t)] eR for 0 st s T and
s0 [ib, io, x] eQ(u).

We have thus proved completely that Q(u)C Q(U), as we desired to do.
u is an upper bound. Q(u) is the core of R relative to R*.

We now pass to a more'explicit representation of the core of R relative

to R*. Nemely it is possible to show that this core is the union of three sets,
[ ]
say S, S,, snd 85 defined as follows!
*
8 = JNR
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S, is the set of all points (%, &, x,) in B with %> (kg %g)
such that the solution ¢(t) of the equation
.E = hCéb E: €, t) - B(t) + Of(t) = CP(E) E; €, t) (1-5)

with initial conditions %(0) = Xo t(0) = k., £(0) = X, does not leave

*o
R for 0=t =T, unless it previously enters J.

3 . N oo 3 . * . o .
83 is the set of all points (xo, %o xo) in R" with %, < -7\(xo, xo)

0
such that the solution £(t) of the equation "€ = h(%, t, &, t) + g(t) - at) =
_ o(E, &, &, t)
with the initial conditions ¥(0) = %o t(0) = % £(0) = x,, does not leave
R for O0st s T, wunless it previously enters J.
By definition of J, it is obvious that Sl is part of the core.
We next prove that 82 is part of the core, namely that SQCQ(E). To

prove this we consider the equation

% =h(X%, X, x, t) +u +w (1.6)

1]
]

end its solution such that ¥(0) x(0) = X0 x(0) = x . Here w is
an arbitrary element of W, and u (¥, X, x, t) = €(t) when % > A(k, x).
Thus U is initially - B(t). If the solution were to enter J, it would
be trapped there, and there would be nothing more to prove. Hence, in the
only case of interest % >0 and u = -B(t) as long as the solution stays in
R. Thus we are led to compare the system
%= f(%, %, x, t) =h(%, %, x, t) -B(t) +w (1.7)
with the system (1.5). Since w s @, we see that o(¥%, %, x, t) z £(%, %, i, t),
and the monotonicity - requirement is satisfied. Since, by hypothesis,

|¥(t)] s A, |t(t) =B, and [&(t)] s C + BT for OstsT (at least as long as

J 1is not entered), we therefore have by Theorem 1.8 of the Eighth Progress Report
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%(t) A
%(t)
x(t)

for 0 st = T. Moreover. since ¥(t) >0, we have Xx(t) 2z 0=z -B and

A

(t)
E(t)
£(t) s C + BT

W

A

B

A

WA

¥(t) > -A. Hence |%(t)| s A and

%(t)| s B. Finally, from the fact

that %(t) 2-B, we find that x(t) z x, - BT 2 -C - BT, so that |[x(t)| s C + BT,

0]

Hence, the solution of (1.6) under the given initial conditions remeins in R
for the given time intervel. This completes the proof that SQC Q(ﬁ).

The fact that those points of Q(u) For: which x, > ?\(xg, x3) must belong
to S2 is obvious from the fact that such points are controlled by u no matter
what the wind is and hence, in particular, if w = a(t), while Q = - B(t) until
J is entered, if it ever is entered. |

Similar statements can be made about S and so it is easy to see that

3
the core of Rl relative to I?%, is

Q(u) = sluq Sé‘.;.U s3.
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2. A GENERALIZATION OF THE MINIMAX PROBLEM.

Our concept of the minimax problem has undergone a number of changes
in the course of this study. The latest formulation occurred in the Fifth
Progress Report. Although this formulation seems to meet the main require-
ments, there are two respects in which it now seems wise to introduce a slight
' generalization. In the first place, in Section 1, we have already indicated
a reason for allowing the comtrol function to depend explicitly upon t as
well as implicitly through the mediation of x. In the second place, the
quentity F to be minimaxed, should be allowed to depend not only on, the
state variables x but also upon both the control function wu, and the
wind w. For instance, from the physical point of view, F might represent °
the bending moment of a launch vehicle, a gquantity which could depend very much
on both the wind and the control function as well as on the state variables.
Hence we would wish to replace the continuous function F(x) of Section 1
of the Fifth Progress Report by a continuous function F(x,w*,u*), where w*
is an element in the union of the ranges of all the functions w € W and where
u* is ﬁn element in the union of the ranges of all the functions u € U, and
x has the same meaning as before. For the sake of clarity we give the complete

present formulation as follows
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We consider the system
S: % = f(x, w, u)

where x 1is an n-vector representing the system's state, the dot represents
differentiation with respect to time t, w and u are vectors (of any
dimensionality, not necessarily n), and where f is aﬁ n-vector function
of x, w, u, defined, say, for xeX, wew*, .and uetU™,

We consider a class W of functions w (referred to as ‘“winds")
which map the time interval [0, T] 1into the set W and a class U of
functions u (referred to as "controls") which map the cartesian product
of X by [0, T} into U™

Under suitable conditions on f and the class W and U, the system

S, which is now thought of as taking the form
x = flx, W(t)) u(x: t)])

admits, through each initial point X, & unique solution,

x = x(t, X5 Vs u) such that x(o, Xy W, u) =X

Moreover, the system is supposed to disintegrate whenever the solution
emerges from some given region RCX. We find it therefore useful to say
that the system S is uniformly T-tame with respect to R, 1f there exists
a subregion quc:R) ghd a non-vacuous sub-class V(<U) of controls, such
that x(t, X, W, u)eR as long as x _€Rp, te[0, T], weW and wueV. We

henceforth assume that S 1is uniformly T-tame in the sense of this definition.
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Suppose next that it is desirable that a given continuous function
' F(x, w, u) defined for xeR, weW*, and ueU™ be kept as small as possible
during the motion. More precisely, we are interested in minimizing by proper
choice of the control u the maximum value of A
Flx(t, X W, ﬁ), w(t), u(x(t, X5 W, u), t)]
for x €R

o T
of the way the three u's enter between the square brackets. The first and

te[0, T] and for weW. This is a peculiar expression because

third u represent an element of U, which is, of course, a function, whereas
the second u represents the value of this function at a certain point and is
thus an element of U*; Nevertheless it is intuitively evident that this F
depends continusouly on X, t, w, and u; and in the sequel we give a formal
proof of this fact under suitable hypothesis regerding U and W. Thus, letting

ma. max
g(w, u) = XQJ:RT{O <t<T F[x(t)xoyw:u): W(t)) u(x(t:xoywyu):t)]} P)

we pose the question as to the existence of a "bad" wind weW and a "good"‘

control ueV such that

.1.b. | l.u.D. - =
sev [weW g(w, u)] = g(w, u)-

The answer to this question is in the affirmative, at least if
flx, w(t), u(x,t)] satisfies the Lipschitz condition demanded in formula
(2.2) of the Fifth Progress Report, with ¢ = {w,'u}, and if RT’ W, and
V are compact. The proof of this existencé theorem is the same as that
previously given for the problem formulated in the Fifth Progress Report,

the proof being given in Section 3 thereof.
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- o= T

~ that the symbol

The only thing which needs to be added is a formal proof of the continuity
of the F introduced above, considered as a function of 1, X W, and u.

We turn our attention immediately to this proof after first making the explanation

.¢:|| is used to denote the norm of a finite dimensional vector, while
{...] is used:to dencterainormiof a vector function,, with'a finité number. of scalaer
functions:as components. Specifically, if h’'"is’a wéctor.functioh: with components h

OIS AR I l.u.b.
-hk. with domdin’ 'Y, we take |h| = yel; In(y)ll.

We seek to prove continuity of F at an arbitrary fixed point €, :-co, W, 1,

where te[0, T, ioeRT, weW, ueV.
In our proof we have the following four facts to work with

I PF(x, w*, u*) is continuous in x, v*, u¥ by hypothesis.

IT  x(t, Xgs W, u) is continuous in t, X, W, u, as proved in the Fifth Progress
Report.

IIT If wueU, U(x, t) 1is continuous in x and t, by hypothesis.

IV If weW, w(t) is continuous in t, by hypothesis.

We let w*=w(%), u* = u(x(%, :'co, w, u), t) ,

and x = x(%, :-co, w, u), If € >0 is preassigned we choose 9, in accordance

with I, so that
[F(x, v*, &f = F(x, v, 0*) | < ¢ (2.1)
as long as |lx - x|, |- ¥, Ju - a¥| <8,

By definition of fuf as m‘:x mix la(x, ¢)ll, 1t 1s evident that

lu(x, t) - 4(x, t)] <(1/2)5l if Ju - af <(1/2)8,. Using III choose
8, <(l/$:L <8, so that lu(x, t) - u(x, €)| <(l/2bl as long as
= - x||, |t - %| < 8,. Hence by the triangle inequality we see that
ha(x, t) - u(x, € <8, (2.2)
as long as Jlx - x||, |t - €], Ju -af< By
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max
t

w(t) - w(t)] <(1/2)5l if fw -ﬁﬁ<(1/2)51. Using IV choose

By definition of f{w[ as w(t)|, it is clear that

8, <8, <(l/361 <8, so that W(t) - w()| <(l/2)31 as long as
t -t <5, .
o - 8l <o
Hence by the triangle inequality we see that

he(t) - #(E) <3 (2.3)

as long as |t - %], {w - w[ < 8.

Using IIT choosed) <&, <3, <(l/351 <8, so that

Hx(t,xo,w,u) - x(%,io,ﬁ,ﬁ)ll <8, <3 (2.4)
as long as |t - £, leo - ioll, Jw - wj, ju-ul< 8-

From (2.4) and (2.2), it is seen that

¥ - a* || <& - (2.5)
as long as |t - t|, ]|xo - ioll, v -w), fu-1al< 8,, where, of course,
we have set u*= u(x(t, X W, u), t). From (2.3) we also have

¥ <8y (2.6)
es,long as |t - t], fw - w] < B, < ®;, where, of course, we have set
w* = w(t). Finally, from (2.4) we have

lx - x| < &, (2.7)

as long as |t - £, =, - i°||, Iv -wl, Ju-af < 8, where, of course,
we have written x as an abbreviation for x(t, X W, u). Hence from

(2.1), (2.5), (2.6) and (2.7), we find that

[F[x(t,xo,w,u), W(t)} u(x(t;xo:w)u)) t)] - F[X(‘E,io,i,ﬁ), ‘?(t)) ﬁ(x(f,io,v_r,ﬁ),f)]l <e
as long as |t - %], llxo - )-{0”, v =%l Ju - @) < 8,, which completes the proof

of the desired result.

-9-12-



!

CHAPTER 10



ON _THE EXTSTENCE OF UPPER BOUNDS: A THREE DIMENSIONAI EXAMPLE.

(i) Introduction

Consider the third order linear controllable system with three zero

elgenvalues, namely

i

l = W(t) + u(xl) X2, X3)

e
]
~

We are interested in solutions to this system subject to the constraints

Ixi(t)l <4 ,1=1,2,3, for all t >O.
Cyt  |w(t)] £a<1 forallt>o0.
Cs: lu(xl, X5) x3)| < 1.

It is assumed that u and w beloag, respectively, to classes of
funetions IJ.and W which assure the existence and uniqueness of
1 A2 and A3

satisfy certain inequalities, the given system admits an upper bound

solutions for the system 83. We shall show that if A

within the parallelopiped R3 defined by Cl'
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(ii) The System S,

It will prove useful to refer to the system

b'd

w(t) + u(xl, x2)

1
82 : .
Xy =%
together with the constraints
C, ¢ Ixi(t)l <A 1=1,2, forall t> 0
Cé : lw(t)] <@<1 forall t> 0
4
Cs : Iu(xl, x,)| < 1.

We recall that the system 82 was
to admit an upper bound within the

it was shown that the function

ﬁ(xl, x2)

+1

was such an upper bound. The core

of R‘2 which lies between the two

1% Xp =hAyt

and

Tyt %

(Figure 1). However, upper bounds

2
-Ay + %] /2 (1) , x

shown in our previous progress reports

1
rectangle R2 defined by Cl' Indeed,

whenever x., >0
whenever x, =0
whenever x. <0
K2 of 82 consists of that region

parabolic arcs

xi /2 (@1) , x, >0, | (1)

1

<0, (2)

in 82 are not unique. In fact,

1
any member u (xl, x2) of U satisfying
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-1 on the line x, = A

1 1’
. . 2
, - 1 in the region x; >0, x, 24, + Xl;/é(a'l) ,
u (xl,x2 N
+1 on the line x = - A,
1 1
. . 2
*+1 in the region x, <0, x, < -4, + xl/2(l-a) ,

is an upper bound. The reader should have no difficulty in establishing
this fact by showing that Q(u?) = Ké. For the sake of clarity we note
that the difference between the core Ké of the present example and the
core established for 82 in our previous work results from the fact
that here we take T +to be +w. The case of a finite T also yiélds
an upper bound; however, we prefer to deal first with the case T=+ w

in order to simplify our proofs.
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Case II
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. _
{(xl, x2) | o< xS A, A+ xl/2(a-l) <x, < A, }»

2
{(xl, x2) | -A <x <0, -A25x2<-A2+x1/2 (1-a)}.

Proposition 1. Let u be an upper bound for the system S2 with

respect to the rectangle R2’ the class W and the time T = + ., Then
u controls the core K2 within itself with respect to any wind w € W,
Proof. Iet p ¢ K, and let TI(t, p, u, w,) be the (unique) trajectory
with wind w and control u- such that I'(o, p, u, w) = p. Suppose

q = I‘(tl, P, U, wl) £ K, for some t, > 0 and some w € W. Then

q € Gl or q € G2. Suppose q € Gl' Let

Wq for all ,0< % Stl

a for all tl < t.

(It is hereby assumed that W iis large enough so that Wy € W )e The
trajectory TI'(t, p, u, w2) , when continued beyond q in the positive
direction, must leave the rectangle R2. But then p ;{ Q(u) = K2,
contrary to assumption. If q € G2 » modify the definition of LY

replacing @ by =~ 0. This completes the proof.
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(11i) The Function u*(xl, X5 xé).

Let
Ry = {(xl?
X; = {(xl,
X; = {("‘1’
Py = {(xl’
B = (&N
L; = R, -

X2,

X2,

X2,

X2,

x) | lag <hy, 121, 2% =0}

x3)| o<x35A3‘},

'x3)| 0>x32-A31r,

x5)| x1=Al}n Ry ,

RQ)UPi,i=l,2.

H ,i=1,2

For any set ACC R2 we now define

+

Let

+
A= AXX

*
u (xl,xz,x3) =

(Figure 2). We shall show that if A5

*
u is an upper bound in

Rj'

, A =A%

+ -
-1 din L, U H

- +
1 10 1] U H

u(xl, x2) in R,

(

Fy

{ x| %,

is large enough:, ther function

Remark: Throughout the remainder of this proof we shall refer only to

Case IT (Figure 1). Cases I and Ia require slight modifications of

little significance. The inclusion of these cases does not change the

nature of the results; it only produces a slight refinement of the

inequality constraint affecting A5
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z Zy ‘ 2y
it \ UL 1T
q —\
A N
1% ' L %
X, >0 X340 ¥y =0
Figure 2

*
(iv) Some Properties Of u (xl, Xps xz).

. *
Fori.léﬁChi.'fixéd'L}% % u satisfies (3) and therefore, if P is any

4 - *
point in the set K, U X, U K and if I(t, p, w, w) 1s the trajectory
' * *
through p with wind w and control u satisfying 0, p, w, u ) = p,

*
then I'(t, p, w, u ) cannot leave R3 through any of the four walls

*
=+ A, 1=1, 2. It follows that r'(t, p, w, u ) cen leave R3

Xy

only through the wall x, = A_ or the wall x3 = - A_,

3 73 3
We shall denote the winds w(t)=0 and w (t)=-0a by o and -0,

respectively.
. 2 -1/2
L 3/ L -
Lemma 1. Let A325\/-2 A, (1) . et pek UK, UK.
- * l
If 1(t, p, @, u ) does not leave R3 through the wall Xy = !5, then

*
r(t, p, w, u ) does not leave R3 through Xz = 1-\3 for any w ¢ W.

: _ "
Proof. lLet p = (xg, xg, xg). Suppose x; < 0. Let I(t) =0I(t, p, v, u ).
In order for TI'(t) to reach the plane x3= ﬁs it must first cross the plane

x3 = 0 and we may as well choose thils péintas our point of departure. We may

thus assume, without loss of generality, that xg * 0.
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Suppose next that xg < 0. Then at time t = 0 the derivative
)’% along TI'(t) is negative and the trajectory TI'(t) begins its motion by
descending below plane x5 = xg . In order for I(t) to leave R3 through
the wall x3 = 1—% it would have to return to this plane and cross it. We
may therefore assume, without loss of generality that xg > 0. (This 'last
assumption is particularly desirable when x;’ =0).

Denote the plane x; =0 by T. et x,(t), xji'(t), 1=1, 23,
denote the x; cordinates along r(t, p, Q, u*) and I(%t, p, w, u*),
respectively. We note first that along To the vector field of the system
52 is discontinuous. Therefore any trajectory whose projection on w reaches
Ty will proceed in such a manner that its projection remain on Ty until
it (the projection) reaches Z,. Moreover, except for the point Z, Iitself,

throughout the duration of this part of the motion we have

%, =v2(1-a) (A,* x,) along T,

independently of the wind.
If peTm, then xe(t) = xé(t) until the respective projections reach
*
the point Z, (simultaneously) at time' 't .
* 1 1
For t+ 2 t we have xl(t) = xl(t) =0 ; x2('b) = xa(t) = - A,
1 v
(and therefore x3(1-,) = x3(t> <A3) as long as X5 > 0. Hence if p e,

the proof of the Lemma is complete.
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In the set K2 - T, we have
*
w+u =w (t) -1< a-1<0

Therefore, if p € K2 - Ty, We get

x,(t) € x,(t) |
so long as (xl(t), :;z(t)) and (xi(t), xé (t)) remain in Ky = oo

Throughout this part of the motion we therefore have

xp(6) S xp(t)

1
x5(t) S %5 (1) S A
The slope of T, 1is negative throughout. Hence (xi(t) s x]é(t)) reaches

T, before (xl(t), xe(t)) does.

(Figure 3). 1;"2.

»(*,_ (t),xz(t))
(), %/tt) AN

Figure 3
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L

Let the time of impact be t_. Then x]'_(to) < xl(‘bo). So long as

xi(t) < x(t) ,t> t , we still have xé(t) < x,(t). ILet t >t

be the first (if there are any) time such that x]'_ (tl) = xl(tl). Then
clearly xé(tl) < x2(tl), whence (xl(tl), xe(tl)) lies either on m,

or gbove it. - In the first case we have (xl(tl), x2(tl)) = (xi(tl), x;_(tl)),

1 ' ,
whence (xl(tl), x2(tl)) = (xl(tl), xa(tl)) for all t >t, for which

1
both trajectories are still in the half space x3 > 0. In the latter case
we note that 5:1(’01) = -1 < 0 and therefore the projection (xl(t), x2(t))
| 1 4 T
moves to the left of the line x, = xl(tl). At the same time (xl(t), xa,(t'))
moves to the right of this line. Hence (xl(t) s xe(t)) will intersect
. T 1 4
. . ry 17" " ‘
Ty (if at all) at some time t, > %, at a point gbove (xl(tz), x2(t2)).
therefore, again, so long as both trajectories are still in the half space
x3 > 0, we have
T
xe(t) < xe(t).

1
Hence, so long as x3(t) >0 and X5 (t) > 0 we have

1
A.. L
X8 Sx5(6) S Ay (4
1 1 )
As long as x3(t) > 0, the projection (xl, x2) proceeds in KX, towards
L o - and then along Ty

yet been reached, the projection is

towards Ze. If the plane T has not
" stopped " &t Z, and x;(t) decreases
monotonically at a fixed rate :'c; = - A5 towards O. Eventually, TI(t, p, w, u*)
descends into the lower half space x5 < 0. From that point on the inequalities
(4) can no longer be applied for all subsequent time. Surely, however, there

is no risk of I'(t, p, W, u*) emerging from R3 through the wall x; = A3

so long as x;(t) < 0. Suppose then that I'(t, p, W, u*) returns to T at

some subsequent point Pl. The proof of Lemma 1 would be complete if we knew
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that I'(t, P, @ u*) does not leave R3 through the wall X5 = A3 for
any point pl 2, for then we could simply apply the results obtained’ -
above to the point Py The fact that I'(t, Pys a, u*) does not leave R3
through the wall x3 A3 will be proved in the following Lemma.

Lemma 2. et A; 2 J'P 132 (1) Y2 ana 1et p e K,. Then

*
I'(t, p,a’, u ) does not leave R3 through the wall Xy = P3.

Proof. Iet p = (xz, xg, 0). As in the proof of Lemma 1 we may assume,
without loss of generality, that xg > 0.

Suppose first that p =M = Va(1-a) A, 0, 0) .

Mz M 124
- ~ ’_‘
ﬁ"/’ Ve Mt \
M 7 7/
i L P \¥ My > X
M, Mr 0 M¢ 4
z
Figure 4
The solution I'(t, M, 9 u*) is-given by
xl(t) =V2(1-a) A, + (-1) ¢
2
- (A A (a-1) t
x2('b) = V2(1-) A2)t oA
x;(t) = WE(1) &) + 2l) 2
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Starting at Ml at time t = O, the projection of this trajectory reaches

2 A

. ' - 2 . .
M2 at time ‘bl-2 i The value of )% at that time is found to be

x(t) =% V2 422 ()2 -

Since A3 > B, and since x3(t) is monotonically increasing for all

0 <t <%, ve con€lude that for all "t in this interval x3('b) < AB.
After the projection of TY(t, Ml’ a, u*) reaches M2 it proceeds

along m, towards Z, and continues to do so as long as xB(t) > 0. If it

reaches Z, it is " stopped " there until xB(t) = 0, that is, until

(t, Mo, u*) returns to the plane T at time, say t,. At that point

xa('tz')< 0 and TI(%t, M, w, u*) descends into the half space X5 < O. It

reeme}-ges on the plane T at some later time and some other point

. 1 1 1
g'= (xl, X5, 0), w,ith_'»xz '2, 0.

This phenomenon is general: starting with any point q = (x]'_, xé, 0) ek 5
with xé > 0, the trajectory TI(t, g, Q, u*) rises monotonically into the
half space x3 > 0 and continues to do so as long as x2(t,g, a, u*) > 0.
Eventually xz(t, g, @, u*) becomes < 0, the trajectory descends to T,
enters the lower half space whence it returns to T , enters the lower half
space whence it returns to T at a later time and at another point.

Clearly then, I(t, M, o u*) or for that matter eny I(t, p, Q, u*),
can cross the plane x3 = A3 only during one of these intervals of monctonic
increase in :% We shall show that the maximum rise in the value of x3

attainable during one of these intervals, starting from any point in the upper

half of Kg, is B. Once this is shown the proof of Lemma 2 would be complete.
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Suppose first that p 1lies in the region 2, M, M5 N13 z, (Figure 4).
The projection of the trajectory through p would proceed along a parabolic
arc until it reaches LPY, then descend to M2 This is the interval of
rise in the value of x3('t). It is clear that if a given point p is replaced
by the point on (the line segment) MBZI which precedes it on the trajectory
~ through p, the rise in %y would be increased (See M, , Figure L), Moreover,

Sce, viewed as a function of x. is a monotonically increasing function. It

1

is therefore easy to see that

fM2 xg(t) at < fM:scz(t)dt + fM;ch(t) at < f Zz(t) at.
E " "5 %
But M, z,

f x,(t) at < fxe('t) at + fxe('b) at = B

Zy M 2

Hence our assertion is proved when p ¢ Zl M2 M5 1\43 Zl'

It peM121M2OM._L, one has
Mg

fMiQ(t)dt +fM:7c2(t)dt < fMie(t) at +fM;?c2(t)dt = 2f x2(t)dt.
P Mg Y% Mg Y%

let Mg = (a,0,0) . The trajectory through Mg (whose projection on T

is given by ) 1is given by
Mo Mg Mg
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xl(t) a + (a-1) t

t2
at+(a-1) 3

[

x,(t)

2
x5(t) = =+ (a-1) gz.

[}

The value of x3('b) is a monotonically increasing functions of a.

Hence

Mg 2
2f xe(t)dt < 2 f x2(t)dt = B.
It follows that the maximum rise attainable (in the direction of ch) by
originating
any trajector& in K2 is B. This completes the proof of ILemma 2,
Lema 3. Iet A, > B. Let uweU, peRy. If peQ(u) then
*
Ir'(t, p, @ u ) cannot leave Ry through the wall % = 1%

(o] o O o _0
Proof. Iet p = (xl, X5, x3). Since p € Q (u) it follows that (xl,xa) € K,

Hence (x,(t,p,a,u*) ) Xp (t,p,Q, u*)) € K, for allt > 0. Hence if I-
r(t, p, Q, u*) ever reaches the plane T , it could not (by Lemma 2) sub-
sequently cross the plane x3=‘_.113. Thus if x;’ < 0 the proof is complete.
We therefore restrict our attention to the case when x%o.

Denote x,(t, p, @ u) and x(t, B, @ u), L =1, 2, 3, by x, (t)
and yi(’c), respectively.

Suppose first that (xi, xg ) € K, - T,. Then as long as both

(x, (%), xy(t)) and (&(ﬁ),ye(t)) belong to K, - ;frz and both xj(t) and
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y3(1:) are positive, we have

*
a+u>a+u =a -1,
whence

X (8) S 7,(8) 5 %p(8) Sp(8), i () Sw; () S A ()

*
If x3(t) vanishes at time t before (x,l(t), xe(t)) reaches T,,
*

the proof is complete on account of the fact that r(t, p, & u ) reached
T. Otherwise (xl('b), xe(t)) reaches T, &t some time t , ot vhich time
x3(to) is still > O.

The situation is now somewhat analogous to that which obtained in the
proof of Iemma 1. We first note that due to the negative slope of Ty and
the inequalities (5) it is necessary that (xl(t), Xy (t)) reach Ty

before (yi (), ya(t)) does. Moreover

xl(‘co) < (e 5 xp(t) S vty
So long &s x,(t) < yl('b), t>t,, we still have x,(t) € ¥o(t). In order for
ye('b) to "catch up" and become < xe(t) the projection (yl(t), yz(t))
must proceed to left of the (moving) line x, = xl(t). However, since
p € @ (u) this projection must remain to the right of Toe This '"catching up"
process cen therefore proceed only through the wedge indicated by diagonal
shading in Figure 5. But (xl(t), x2(t)) has the least possible value throughout
this wedge. Hence

xp(t) € Fp(t)

as long as x3('t) > 0. Hence
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x5(t) Sy5(t) < Ay
as long as x3(t) > 0. This completes the proof in the case when x;’ >0

o o
and (xl, .x2) €K, - Ty

There remains the case when x;> O and (xi, xg) € Tpe This case is ...
disposed of by using the "wedge argument" given s&bove: In order to
surpass (xl(t), xe(t)) the point (yl(t), y2(t)) mist proceed through
the wedge. If at any time t' the latter point coincides with the former it
can either continue to move on L (in which case it would coincide with
(xl(t), xe(t)) since the vertical component %, of the vector field is
forced on 11'2) or move to the right of m,.  In neither case can "yfa(t)
become < x2(t). This completes the proof of Lemma 3.

The following Lemmas are proved inccomplete analogy with Lemmas 1,2 and 3.

- *
Lemme k. let Ay > 8. Let p€K2+UK2UK2. £ T(t, p, <@, u ) does
' *
not leave 1-‘(3 through the wall X = - A3 , then I (t? p, W, u ) does not

leave R3 through x3=-A3 for any w € W.

Lemms. 5i Let A3 >p and let p ¢ K. Then I'(t, P, = a; "'u*)-"do‘es'f'no-t, leave
R3 through the wall x.3 = - A3.
lemms 6. Let Ay 2B, let wey,peR. If P € Q (u) then

*
r(t, p, =0, u ) canndt leave R3 through the wall X = - A3.
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We are now in a position to state our mein result.
_ b 3/2 -1/2 ey
Theorem. ILet B = 3 V2 Ay (L) 7%, 1If A3 > B then u (xl,x221x3)
*
is an upper bound for S5 in R3. Moreover, .Ké < Qu ).
Proof. Iet ue U and let pe Q (u). If p = (x;, xg, xg) then
(xi, xg) € K, Tt now follows from Lemmas 3, 1, 6 and 4 +that
* *
peQ(u ). Hence Q(u) —~Q(u) for all ueU .
. .
The fact that K, < Q(u') follows from ILemmas 2, 1, 5 and L.

This completes the proof.

o

(%660, %, )

Figure 5
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CHAPTER 11



1. THE CORE FOR THE SYSTEM X = h(%,x,t) + w + u.

Eventually we shall restrict h to be independent of +, but We
can begin without making this restriction.
We refer to Section 3 of the Eighth Progress Report, in which the
system
% =h(x, x, t) +w +u (1.1)
was considered subject to certain constraints. We suppose h{k, x, t) to
be monotone non-decreasing in x for each fi;ced X and t. The system

can also be written in the form
5{1 = h(leX2Jt) + u(xl,x2) + W(t) . (1'2)
25

The constraints to be considered are

c

I\
=

i lxi(t)l ;»1=1,2, foral te [0,T) (1.3)

Q
WA

o [w(t)] a <1, weW,

03 : Iu(xl, x2) l =1, weU.
We hereby use A; instead of A and A2 instead of B as in the Eighth
Progress Report.

We suppose we have a non-negative continuous function 7\(x2) defined

for |x2| < A, and such that vhen the point (x,, x,) is initially

within the set J defined by ]xll s 7\(x2) it remains trapped within
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this set for all time during the motion defined by (1.2) with u(xl,x2)

réplaced by u (Xl’x2)’ where u (xl,xe) = - sgn x; for (Xl’x2) outside
the set J. This supposition is supposed to hold for any w € W and
no matter how U is defined inside the set J, so long as it is such that
‘ue U.

The first main result of Section 3 of the Eighth Progress Report was
to the effect thet such a function u ¢ (I was an upper bound for the

rectangle R, defined by C, and for any time imterval [0,T].

The second main result of this section of the Eighth Progress Report

was concerned with the systems

Me
i

o = h(xl, Xp) t) =1 +Q
L
L X2 Xl

(¢f..equation (3.5) of the Eighth Progress Report where the system was

]

X . .
written as a single equation of the second order ¢ = h(g, §, t) -1 +Q)

and

K
[

= h(xl, x2’ 't) + l w O
ll
The following result was implieitly developed although it was not explicitly

stated in the Eighth Progress Report:

Theorem 1.0 The core of the system (1.2), that is Q(ﬁ), is JULl ULE’

where L, consists of those points (io, ko) with

- ."l [
A (x,) < (=) k, s A end |x | = A

n

such that the trajet¢tory of j{; , with initial point (xo, xo), elther
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enters the set J (where it would, of course, be trapped) at some
time t £ T without previously having left the rectangle R2 , or else
it leaves the rectangle R2

If T = o, the second alternative in the definition of Li may

only at some time t =z T.

be omitted, and the picture becomes correspondingly simpler. As in the
Twelfth Progress Report, we restrict attention to this case.

A further simplifying assumption will also be made to the effect that
throughout R, , h(jcl, Xp) t) - 1 +a is negative while h(xl, Xp) t)
+1 - 1is positive. This is, of course, true in the particular case
h(xl, X5 t) = 0 studied in the Twelfth Progress Report and is true
also in the slightly more general case in which h (being continuous)
is independent of t and vanishes at X) = X5 = 0, and in which Al
and A2 are sufficiently small. Physically it means that a sufficiently
powerful control is always available to prevail against the combined effects
of the wind and the natural characteristics of the system embodied in the
function h.

As a result of these assumptions, it is seen that the trajectories
< O and negative slopes when

1

Xy > 0. The opposite is true of the trajectories of Z . The

—
of >_'1have positive slopes when x

trajectories of both Z and Z cut the X5 = axis at right angles.
Thus trajectories of zi and 22 follow curves similar to parabolas,

symmetric in the X5 - axis, which played such an important role in the
Twelfth Progress Report. We therefore call these curves pseudo-parabolas

and arcs of these curves are called pseudo-parabolic arcs. Although

! 1

these pseudo-parabolas have " pseudo-vertices on the X5 = axis, where
they intersect this axis at right angles, they are not necessarily
symmetric in this axis, unless h(-xl, Xpy = t) = h(xl, X5, t), an identity
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which we do not assume.

If T=w and if h does not depend explicitly on t, as we hence-
forth assume, it 1s easily seen from Theorem 1.1 +that the core K2,
illustrated in Figure 1, of the system (1.2) 1s bounded by thé following:

A pseudo-parabolic arc Ty s associated with the system Z , reaching

from the point %, = (0, A,) to a point N, on the boundary of R, with

2
positive abscissa x. (Nl may be on x; = A oron x,= - A2).
The part of the right-hand boundary of 32 extending from the last
mentioned point N, to the point 2, = (o, - A2).
A pseudo-para'bolic arc T, assot¢iated with the system Z, reaching

from the point 22 = (0, =- Aa) to a point N2 on the boundary of R

2
with negative abscissa X . (N2 maey be on xl = - Al or on X, = + AE-.
The part of the left - hand boundary of R2 extending from the last

mentioned point N, to the point 2, = (o, A2).

Xy
Z, )
2 (Auﬁﬂ
¢
&A,,0) (A, 0) o x,
A7/ == NN
\ N
Zl
Figure 1
- 11k -




In following Ty from the point Nl we first reach the boundary of
the set J either at the point %2,, or at an earlier point P. But since
LK is part of the boundary of K2, it is easily seen that it can not enter
into the interior of J. And from the characteristic property that J hag
of trapping within its interior, when u = u, anything that ever gets there !
including some of the points near P, it is not hard to prove that Ty must
coincide with the boundary of J from P until it reaches its terminal at
Zl.

We ha;\re already restricted ourselves to taking T = o, The class W
of functions defined on [ 0, @ ) is, as previously, assumed to be bounded
in absolute value by the positive number @ < 1., We now suppose further-
.more that W 1s wide enough so that, for any tl e [ 0, » ), whenever W€ W, and

*
Wo € W, the function w and w, defined as follows also belong to W.

*
W (t)=wl(tl+t) for t 20

w (t) = wl('b) for 0st<t (1.4)

1

w (t) = we(t) for tz % /

The following theorem which generalizes Proposi’_cion 1l of the Twelfth
Progress Report gives a further indication of the advantage of teking T = w .
Theorem 1.2 Let u be an upper bound for the system (1.2) , assuming that

h(x t) = h(xl, x2) is independent of t. The upper bound u is assumed

12 X0
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with re.spect' to the rectangle R2 and the class W with the properties
' specified above. Then u controls the core K2 within itself with respect
to any wind w e W. »

Proof, If peR, let T (t, p, u, v) be the unique trajectory with
the wind w and control u such that I'(6, p, u, v ) = p. »Suppose now
that p e K, but that q = r‘(tl, D, U, wl) £ K, for some t, >0

and :some w, € W. Then q is still in R,, since p ¢ Q(u) = K.

1

But since q f K2, there will exist a w W, such that the trajectory

s €
r(t, q, u, w2) will leave the rectangle. We now define w(t) in terms of.
wl(t) and we(t) in accordance with (1.4t). Then the trajectory I'(t,p,u,w)

follows the same path as I'(t, g, u, w2) for t > tl and will hence leave

the rectangle R2. But this is absurd since w ¢ W and u controls the

system within R, relative to the whole class W. Hence there can exist

2
no point q = I'(t, p, u, w, ) £ K, (if p € K2), as we desired to prove.

2. ON THE EXISTENCE OF UPPER BOUNDS FOR THE SYSTEM

% = nlk, k) + w(tHulk, %, x)

By setting X% = X)s x

Xpy X = x3 we write the system in the form
k) = h(xg, %) +ulxp 2y x5) +w(t)

% = 2.
X =X (2.1)

5 =%

Our immediate purpose is to define a function u*(xl, Xp) x3) which
will later be proved to be an upper bound. The definition is analogous
to the one that should have been given on p. 6 of the Twelfth Progress
Report. It will be observed, however, that this definition (though 1its

intention is fairly clear) containe a couple of errors. The definition
. - ll - 6 -
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is also slightly changed in some other unessential respects. Thus the
following is a modification, generalization, and cor'rectlion of the one
which appeared in the Twelfth Progress Report.

Let

IA
[

-
(&
[}

R5={(x1’x2’x3)_| A i'-1,2,51(
2={(xl»x2:°)| |%, | —1,2}
{ (0, 0, %) | 0<xs 5 A ‘}

{ (0, 0, ) | 0> x ;—AB}

s { (-(-1)* &, Xgs 0 )Ir/) Ry, i
3 = { (x5 %5, 0) | = (-1)'g; (xp) < -(-1)* xl} /) =,

I
=
-
I

o o

o
i

1, 2

(7]
I

where X) = 8 (XEJ is an equation for the half of the pseudo-parabola

for which -(-1)* x> 0.

j belonging to Z and passing through the point 2 5
: .

See the previous section for the meanibng of Z and Zi' Let

i H, = G’i-’U Py » i=1, 2
|
’ L =R, - H , i=1, 2.
| For any set A R, we now define
|
‘ + + - -
= A = A
i A A x )%, b4 K3
| Lot
-
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- See Figure 2 of the Twelfth Progress Report. We shall show that, if A

-1 in 1) U =

L |

A in 17 |

l\)m+

*( )
u (X, X,, = .
_l 2 ¥3 if x, > 0

-1 in R 1

if x, < 0

+1 in R 1

3
*
is large enough, the function u is an upper bound in R3

*
For each fixed . x3 y u (xl, X5 :%) is seen to be an upper bound for
the system
X, = h(xl, x2) +u+w : (2.2)
5c2 = X;.
+ - *
Therefore, if p is any point in the set K2UK2UK2 and if I'(t, p, w, u )

*
is the trajectory through p with wind w and control U satisfying

I}

* *
o, p, w, u ) p, then I(t, p, v, u ) cannot leave R3 through any of

the four walls x, = + Ai, i =2, This is .a consequence of Theorem 1.2,

i
*
It follows that I(t, p, v, u ) can leave R5 only through the wall

x3 =A3 or the wall X = -A3'
We shall denote the winds w(t)=a and w(t)=-a by @ and <,

respectively.
Let x]({i) (t) be the solution of the system Z (1=1,2kx=1, 2)

satisfying the initisl conditions x(t) (0) = 8k (-1)'"0 A, and let 1t

-11-.8 -
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intersect the x., - axis at t = Tii) < O andat t = T(;) > 0.,

1
‘zgi) (1)
Th = X
en we set B m? ‘/1§i) 2. (t?‘ dt

In the special case considered in the Twelfth Progress Report, the

~ solutions xﬁl) (t) end x(i)(t) of systems EE; and ZE; respectively

intersect each other at two points Mi and M2 on the Xy axis. See

. Figure U4 of that report. This need not be the case for the present more
general system. If, however, Al is large enough relative to a fixed A2,
it is geometrically obvious that these two pseudo-parabolas intersect each
other at two points within R2, one on each side of the X5 - axis. We
restrict ourselves to this case. The other cases are not conceptually more
difficult but they do present more annoying details. ILet the point of
intersection on the right side of the Xy - axis have the ordinate Xy =8y
and the one on the left side have the ordinate Xy = 85 These points lie:

) on the pseudo-parabolic arcs T,

the equation for the pseudo-parsbolic arc T,, given in the form x; = gi(xe)

and To respectively. We again refer to -

for | x, | = A,
If (-1)i &, s 0, define v, = 0. If, however, (-1)i 8, >0,, ve let

Y, = dx
i -
Si(x)
a,
i
In this latter case, the significance of Ty is that itgives the time it

takes for a point (xl, x2) to pass from the intersection point (gi(ai), ai) on

- 11-9-
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L to the X - axls whenever the control is such that it compels the

point to move along the arc Tye The result is, of course, obtained by

integrating %k, = x) = g; (xz).

Moreover, if we let xg(t) be the solution of the differential equation

Xy = 8i(x2) and the initial condition x2(0) = a,, then

i

T
A1=L |x2(t)|dt

is the increase in (-1)" x

3
projection of the point (xl, Xps x3) on the plane X5 = 0 moves along

(under the assumption ké = x2) as the

T, from (gi, (ai), ai) to the x, - axis as previously described, in
the case that (-l)i &, >0. Otherwise, of course, A, = 0.

We now take AN = max (Al, %2) and state our main result to the effect
that u* is an upper bound for the system (2.1) with respect to R3
provided that A3 z B + A

We have not had time to write up the complete details of the proof of
this result. We will do this for the next Progress Report. Actually the
proof for the special case treated in the Twelfth Progress Report needs only

to be modified so as to avoid the explicit integration of the systems zg;

and Z « It turns out that this can be done by appealing to Theorem 1.2
of the Eighth Progress Report and the following simple corollary thereof':
lemma 2.1 Iet" f(xl, x2) be a monotonic non-decreasing function of x,
for each fixed x,. Let f(xl, x2) € - u, where u is positive. Let

1
xl(t,a), xa(t,a), xB(t,a) satisfy the system of differential equations

il = f(xl, x2), %, = X, 23 = x, and the initisl conditions, xl(o,a) = a,

x,(0,8) = xs(o,a) =0, a > 0. Then there exists a positive number T =T (a)

- 11 - 10 -
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such that x, (t,a) >0 for 0<t <T and such that XZ(T) = 0. Moreover
T(a) and x3(T(a), a) are both monotonic increasing functions of a.
Proof Since x,(0) =0, and x,(0) = xl(O) =8>0, x, (t) >0 for
sufficiently smell positive values of t. Now evidentiy xl(t) s a - ut.
Hence x2(t) s at - % p.'t2 ,» which is negative for sufficiently large values
of t. Hence we let T be the (first) point where x2(t) ceases to be positive.
This proves the first statement of the Lemma.

let a< al, xi(t) = x,(t,a) eand xi (t) = xi(t,al), i=1, 2, 3.
Then %, = f [k,(t), x2(t)] and ié = f[i;(t), xé(t)] and we also have
the initial condidtions, x2(0) = xé(o) = 0.

1
1

It follows from Theorem 1.2 of the Eighth Progress Report that

%, (O)=x2(0)=a<a1=x =5<; (0).

x,(t) s x5 (t) end that x (t) = xz(t)§;ci(t) = x(t)

for t > 0. Since xg('t) >0 on the interval (0,T(a)), it follows that

x;‘(t) is also positive on this interval. Hence T(a) s 'l‘(al). Finally
T(a) T(a) | 7(a') 1 1 1
a = dt = t) dt s t) dt = T .
i) =[x e s [ TG e s/ ) at < o 1)

This proves the last statement of the Lemma.

!
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3. ON THE EXTSTENCE OF UPPER BOUNDS: MODIFICATION OF A PREVIOUS EXAMPLE.

(1) Introduction.
As in our Twelfth Progress Report (T P R) we consider the third

order linear controllable system with three zero eigenvalues, namely

B o=w(t) +u(x), %, %)
S3: 5c2=xl

We are interested in solutions to this system subject to the constraints

1’ 02, 03 of TPR. It is assumed that u and w belong, respectively,

to classes of function U and W which assure the existence and uniqueness

C

of solutions for the system 83. In TP R we showed that S3 admits an

*
upper bound u  within the parallelopiped R3 defined by Cl‘ In the present
section we shall exhibit the existence of still another, more sophisticated B

*
upper bound v which, apart from being an upper bound in R3 , has certain

additional desirable properties within the core of R3.

Throughout this section we shall refer freely to the Figures, definitions
and notations of T P R. |

*
(11) The Function v (x, Xy, %)

Let R,, X;, x;, P,, P, be as in Section 2 of the present report. Let
17'3; m, be the two parabolic arcs

Tee X

2
2=x1/2 (o -1), x, 2 0

M xp =% /2 (1-0), % S 0

- 11-12 -
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(Figure 2). ILet M, and M, be the regions shaded, respectively, in

Figure 2 by horizontal and vertical lines. Iet G, G,

l
\

il A
M2

h'

Figure 2

be as in T P R. (These are NOT the same as the sets G

4 of Section 2 of
the present report). ILet

L, =GN RIU B UM

Li=R2-Ji, i=l’2o
For any set AC R2 we now define

AT = aAXX A+=Axx3'

- 11 =13 -
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Let

+
-1 in Ly Y 5]

* v . - +
v (xl,xz,x3) = +1 in Iy v J5

o (xl, X5 :%) in Ry

. | _
where u  is as defined in T PR (Figure 3).
«1

!

| l}
\ N "hi I \_
xs >0 _ a0 RTETITRARR A
— . ., LLL
L \ \ \
g : \'H. R L\
~ N

x3<0

- \ AN m N
%5 =0 \
\ \ N ~i \
\ N
\H I
DNy N
N
Figure 3 .
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Theorem 3,1. Iet B = % J2 AZ/2 (1- a)-1/2 . If A3 > B then

v*(xl, Xp, xj) is an upper bound for 83 “in RB' Moreover, KQC:Q (v*),
where K2 is as in T PR.

The proof proceeds along lines which are fairly analogous to the proof
in T P R. The reader may therefore wish to review the latter proof before
proceeding with the present one.

(iii) Proof of Theorem 3.1

*
Lemma 3.1 Let A3 > B and let p e K,. Then r(t, p, @ v ) does
not leave R3 through the wall x3 = A3

Proof. ILet p = (x?_, xg, 0). As in the proof of Lemma 2, T P R, we

)
2

o _o . 0 . L, ¥

point p = (xl, X5 0) ¢ K,, with x, > O, the trajectory M(t, p, @ v )

may assume, without loss of generality, that x, > 0. ©Starting with any
rises monotonically into the half space x3 > 0 and continues to do so as
* *
long as X, (t, p, @ v ) > 0. Eventually, x, (t, P, @ v ) Decomes
*
< 0, at which time x3 (t, p, @ v ) begins to decrease monotonically.

*
Moreover, once X, (t, p, @ v ) becomes <O it remains < O as long as

x3(t, D, O, v*) is still > 0. Thus, once X, (t, p, Q v*) becomes

< 0, the tra,jectory\ r (¢, p, @, v*) begins a monotonic descent and it
cannot start a new ascent before first returning to the plane 71_‘(see T P R).
Finally, if a subsequent ascent of t, p, @, v*) towards the wall x3= A3
does take place, then it can only caome after It, p, Q, v*) first passed
through some point q = (x}, x5, 0) with x; > 0. It is then sufficient

to study I(t, 9, @ v*), t > 0, directly, without reference to its "past"

history. In other words, for the purpose of this Lemma, it is sufficient to
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take p = (x}, xg, 0) €X, with x, > 0 and consider the arc of

.
I(t, p, & v ) corresponding to the first maximal interval, say

*
0< t < t,, during which I(t, p, @ v ) is ascending. However, for

*
all 0< t < t, we have xi(t, P, % v) > 0,1=2,3, and therefore

1

* * * * *
v (xl(t: P, @ Vv )) e o oy x3(t: P & Vv )) =u (Xl,('t, Py u), ...,

*
3‘3(13; P, @, u ))
whence
* *
P(t: D, & Vv ) = I‘(t; b, & u )

foraell 0< t < ¢ This, together with Lemma 2 of T P R, completes

1°
the proof of Lemma 3.1.
leme 3.2 Iet A > B . Let p ¢ KU KU K. Ir D¢, b, o v')
does not leave R3 through the wall :oc3 = A3, then I(t, p, w, v*) does not
leave R3 through x3 = 1-\3 for any w € W.

Proof. Let p = (xi, xg, x;) As in lemma 1 of T P R we may assume}without

loss of gemerality that x0> 0, x°> 0.7 Let x.(t), xo(t), i =1, 2, 3,
P x3 - 2 = i i
*
denote, respectively, the x, coordinates of I(t, p, @ v ) and

1
*
r(t, p, v, v ). ILet [0, t,] be the maximal interval throughout which both

X, (t)> 0 and x%,(t) > 0. Then for all t €[0, tl] we have xi(t) >0

and xi’ (t) >0, 1=2,3,

whence

*
F(t:P:a:u')

*
T (t, p, & v )

* *
I‘(t;P:W:V) r(t, p, v, u)

- 11- 16 -




* .
where u is as in T P R. Hence it follows from the proof of Lemma 1

in T PR that

x5 (1)< % ()< A
<

N .
for all 0< t t,. Thus I'(t, p, v, v ) cannot reach the wall Xz= A3

1
during the interval [O, tl]. A subsequent ascent towards this wall would
have to start from some point gq = (xi, x]2‘, 0) e K, with xé > 0. But

then we may choose q as our starting point and argue as sbove.
This completes the proof.
Iemma 3.3, Let A32 B. Iet ueU, pe R3. If p e Q(u) then
*
I'(t, p, @ v ) cannot leave R3 through the wall X5 = A3
o .o _0 . o .o
Proof. Iet p = (xl, Xp x3). Since p ¢ Q(u) it follows that ().cl’ xg) € K,e
* *
Hence (xl(t, P, O V), xe(t, P, @, v)) e K, forallt > 0. Hence
*
if IN(t, p,a, v ) ever reaches the plane T, it could not (by Lemma 3.1)
subsequently cross the plane x3 = A3 Thus if xg < 0 the proof is
complete. We therefore restrict our attention to the case when y; > 0.
*
Denote xi(t, P, @ v ) and xi(t, P, @ u), i=1,2, 3 by xi(t)
and yi(t) , respectively.
o o = *
If (xl, x2) € M, then xz(t, P, @, v ) remains <O as long
*
as x3(t) > 0. Hence I(t, p, @, v ) cannot start an ascent towards the
plane Xy = A3 until and unless it first reaches the plane 7. This
completes the proof in the case when (x;, xg) € 1*'712; We may therefore
o o .0 = . =
assume that X5 >0 and (xl, x2) € K, - M,. However, in K, - M, the
* *
function v is identical with the function wu of T P R and the proof

of Iemma 3 in T P R applies. Therefore, as long as (xl(t), xa(t))
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and (yl, (t), yz(t)) are both in K, - M2 we have

x,(t) < ,(t)

x5(t) & y5(t) < A5.

It follows that (xl-(t), xz(t)) reaches the set ﬁz before ye(t) becomes
negative. But once (xl(t) , xe(t)) reaches the set 1712 it cannot leave
it until and unless I(t, p, @, v*) reaches the plane T . This completes
the proof of Lemma 3.3,

The following Lemmas are proved in complete analogy with Lemmas 3.1,
3.2 and 3.3.
Leme 3.4 et A;> § and let pe K, Then I(t, b, -, v') does not

leave R_ thro the wall = - .
3 ugh the wall x A

-

Leme 3.5. Let A;> B. Iet pe X U KUK 1 I(t, p, -0 V™)

o ra . *
does not leave through the wall x = - A , then I(t, p, w, v
j 3 2 2 )

does not leave R3 through x3 = - A3 for any w € W.

Iemma 3.6 . Let ABZ’B . Let uce U,peRB. If p € Q(u) then

*
D(t - ; cannot leave through the wall = - A_.
( » b, y vV ) R3 4 3% 3

The reader will easily convince himself that the proof of Theorem 3.1

o]

is contained in Lemmas 3.1 - 3.6.

The function v* is cléa.rly superior to the function u* of TPR
inasmuch as it eliminates the worst oscillatory features of a trajectory moving
under the influence of u*. A more detailed discussion of the exact nature

*
of v does not seem warranted at this time.

- 11 -18 -
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CHAPTER 12



1. FPROUF CF THE EXISTENCE OF UPPER BOUNDS FOR THE SYSTEM.

T=h (%, %X) +w (t) +u (%, %, x)

The corditions under which the system referred to in the section
title has an upper bound were stated in Section 2 of the Thirteenth Progress
Report. In the present section we present the details of the proof that
an upper bound actually exists under the stated conditions. The proof

. deperds upon six lemmas, which are discussed in the following pages, after
which the main theorem becomes almost self evident.

The notation of the section is intended to be the same as the notation
of Sections 1 and 2 of the Thirteenth Progress Report. it mey be noted,
however, that the A of this section is the same as the A of Section 2
of the Thirteenth Progress Report, but has nothing to do with A of Section 1

| of the Thirteenth Progress Report.

*
Lemma 1. Let Ag 2 B+ A and let p e K. Then I (t, p, &, u )

does not leave R3 through the wall x3 = A3.

Proof. Let p = (x;, xg, 0). If xg < 0, we see, from the fact that

kB = Xp) that the system begins its motion by descending below the plene
x3 = 0., It can rever reach the plane x3 = + A3 until it first returns
to the plane x3 = 0, and this must happen (if‘it happens at all) at a

point where X, % 0. Hence, Vithout loss of generality we may assume in

the first place that xg'z 0.

- 12-1-
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Suppose first that p = Ml’ the point where the pseudo-parabolic

arc Trl intersects the xl - axis.

\ , A% \

3
;7
B

Figure la - Figure 1D

*
The solution I (t, Mj,@, u ) in terms of the xl({i) (t) introduced
in the Thirteenth Progress Report, bottom of p. 8, may be written as follows
o _ (1) (1)
x (8)= 17 (8 + 7))
1 1
o (0= 5 e+ <)
(1)
Ty +t

"t t
x3(-t)= / X, (s)ds = /j xél)(sﬂ](_l))ds = [ xél) (¢) do.
(o] o] T](-l)
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Starting at M1 the projection of this trajectory reaches Zl at

time - Tﬁl), by definition of T§1). The projection of the trajectory

may then return to the x, - axis at a point Mé before it meets the

1
pseudo-parabolic arc L at Mé as shown in Figure la or it may meet
the arc T at Mé and then follow along Wé until it reaches the
xl; axis at the point Mé where T, Ccrosses the X, - axis, as shown in
Figure 1b. ’

‘ri

In the case illustrated by Figure 1a, the projection of the trajectoryx

proceeds Trrom Zl to Mé after the lapse of a time T(l) . Hence it

passes from M, to M, after a total time t, = (l) 1( ). The. valug of x;
at that time is found to be
r&l) + tl Tél)
xs(tl) =,/;(l) xél)(s)ds = /;(1) xél)(s)ds s B s B + X
- 1
Since A3 2 B+ A, and cince xj(t) is monotonically increasing for .

all t ¢ (0, t;), we conclude that for all t in this interval xz(t)'giA3:7tﬁ”*}“

After the projection of T (t, M, 0 u*)freaches ME’ xa(t) starts to
decrease while the projection goes toward M% and, if it actually reaches
M% , it then confinues along T toward Z2 as long as x3(t) is still
positive. When once x5(t) becomes s 0, there is no possibility for
the trajectory to pass through the wall x3 = + A3 until it emerges again
at some point (xl, Xos 0) € Ké for which x2 2 O. Also, if the projection
reaches Z, before x3(t) s 0, the projection will be stopped st 2, until
xj(t) s 0, and the previous sentence is again applicable.

In the case illustrated by Figure 1lb, the projection of the trajectory

~N * (1)
proceeds from Z1 to after the lapse of a time 1 < T e Hence it

- 12-3 -
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*
passes from Ml to Mé after a total time tl =T

of x3 at that time 1s found to be
e 4
%) = (1)(s)as s
B\ /;§1) 2 /;£l)

After reaching N% the projection proceeds along

reached at time tl .
Report pp. 9 and 10,
T2
) - x(83) = [ x, (s)as -
x5(ty) - x5(t)) = X2 (8)as =ng
Hence, again, we find that x3(tl) SB+ANS
see that, for all t ¢ (0, tl), xB(t) < A3.

4%

—>—% —
”7 e (7] I% “1 1
z&
Figure 2g
- 12 -4 -
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xé;)(s)ds s

A3,

Ty

and thus;'as before, we

g

The value

until Mé is

In terms of previous notation, Thirteenth Progress . ..
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Suppose first that p 1lies in the region bounded by Zl M; M,5 Zl
in the case of Figure 2b. The projection of the trajectory through
p would proceed along a pseudo-parabolic arc until 1t reaches L and

descend to M% and on to Mé. We already know that the amount that

X

5
examine the amount that x5 increases during the passage from p to

MZZL. It is clear that, if a given point p 1is replaced by the point M,+
on the ling segment M3 Zl which precedes it on the projection of the
trajectory through p, the increase in x3 would be made greater. Even
this gz'és:ter increase in x3 will be shorn to be < B.

Let [xl(t) , x2(t)] denote the motion of the projection along the
path M, M M sterting st M, when t = O and ending at M when
t =T, say. Let [gl(t),ge(t)] denote a corresponding motion along
Z, M, starting st 2, when t =0 and ending at M when t =T,
since x,(0) < £,(0); %,(0) = £5(0); Rp(t) = x(8), and Ey(t)=y(t),
it is ciear that xe(t) < gz(t) for positive t' at.least as long as
xl(t) < gl(t). But, if the point (xl, x2) is below (gl, 52): it is
clear from Figure 2b, that it is impossible for it to be to the right
of (gl, gg). This is because the slope of the pseudo-parabolic arc

M?z' Z, is everywhere positive and the poin’t..(xl, x2) is at all times

in the closure of the region bounded by Zl Pé M3 Zl' Thus it is impossible

for xl(’t) ever to exceed gl(t) during the motion toward M-ZL. It is there-

fore clesr that xz(t) remains < gg(t) during this motion. Hence the

poirnt M% is reached more quickly along Mb' M5 l‘é than along Zl M; .

increases during the passage from I«é to M, is s y. Hence we

-~ 12 =5 =~
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In other words Tx < Tg‘ Hence
T T T
x X g
/ x5 (t)at < / ge(t)dt < / §2(t)dt. (1.1)
0 o] o)

Since x3 = X5, it is therefore seen that the rise in x, during the

3
passage from Mh to M; is less than the rise in x3 during the passage

from Zl o Mé. But this latteris less than the rise in x3 during the

~ passage from Ml to M; which is already krnown to be < PB. We have

therefore disposed with the case illustrated in Figure 2b.
- . . " -
Suppose next that p 1lies in the region bounded by Z1M2M2M3Zl in"
the case of Figure 2 a. The projection of the trajectory through p

would proceed along a pseudo-parabolic arc until it reaches Ty OF the line

segment Mg ME’ In the former case it proceeds along Ty until it reaches

M§ on the X = axis. As in the case of Figure 2b we can, without loss
of generality, take p at MLL Again we consider the motion of the point
[xl (), x2('t)] beginning at M, when t =0 eand ending on the x;- axis

when t =T _ with 3(2(’0) = xl(t). We also consider the motion of

_[gl(t)’ gg(t)] elong Z; M, beginning &t 2, wvhen t =0 and ending

at M2 when t =T Exactly as in the case of Figure 2b, we prove that

£
T, < T§ and that x2(t) < gt) for 0<t s T . Hence the formula (1.1)
is again valid. This disposes of the case illustrated in Figure 2a,

The only remaining cases to be considered occur when the initial point
is in the shaded erea illustrated in either Figure 2 a or Figure 2 b.
Without loss of generality we may clearly suppose that the initial point is
at M6 on the positive Xy = axis. In tne case of Figure 2a, it then

follows at once from Lemma 2.1 of the Thirteenth Progress Report that the
- 12
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increase of x3 during the passage from M6 to M7 along thé indicafed
pseudo-parabolae is less than the rise of x3 during the passage along

M1 Zl M2, which is known to be s PB. The case of Figure 2 b 1is slightly
more difficult but the details may still be left to the reader. Before
applying the Lemma one should extend the pseudo-parabolic arc Zl M% until
it intersects the negative X - axis. The point M7 may be on the arc

L instead of on the negative x.- exis as shown in Figure 2 a. If this

1

is the case one should also extend the arc M6 M,.( until it crosses the

negative X - axis. One thus finds that the rise in x3 during the passage

from M6 to M7 is< g. If M7 is on Tos there is a further rise in

x3' which, however, is obviously less than A.

Lemma 2. Iet Ay z B+ A ILet pe UK U K

If I(t, p, @ u ) does not leave R, through the vall x; = A, then

(t, p, W, u*) does not leave 1’!3 through the wall x5 = A3 for any

w e W, _

Proof, et p = (xi, xg, )%)). Suppose x; <0, Let I(t) = I(t, p, w, u*).

In order for I(t) to reach the plane X5 = A3 it must first cross the

plare x3 = 0. and we may as well choose this point as our point of

departure. We zﬂay thus assume, without loss of generality, that x;_ z 0.
Suppose next that xg < 0. Then at time t = O the derivative

5% alorg I'(t) is negative and the trajectory I'(t) begins its motion by

descending below the plane )% = x;. In order for TI'(t) to leave R3 .

through the wall x3 = .L\.5 it would have to return to this plane and cross -

it. We may therefore assume, without loss of generality, that xg z 0.

= 12 -7.-
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Iet xi(t),;ci’(t), i=1,2,3, denote the x; coordinate along
r(t, p, @, u*) and P (%, ‘p, w, u* ), respectively. = Our |
hypothesis is to the effect that x3(t) S A; forall t2 0. We
wish to prove that :':3(1:) s A3.

We note first that along PN the  vector fields of the systems governing
the motions of the projections (on the plane Xz = 0) of both I'(t, p, @, 'u*)
and I(t, p, W, u*) are discontinuous as long as ;%(or ij) > 0. Morever,
any trajectory whose projection on the plane J«:3 = 0 reaches Ty will
proceed in such a manner that i#s projection remains on Ty until the
projection reaches 22 or until the trajectory has an J%-coordinate which

is no longer positive. Except for the point Z2 itself, throughout this

part of the motion we have
X2 = ge (xa)

1

‘ where x. = g2(x2) is the equation of T,. This is true independently of
| . -
‘ C the wind. If the projection of p e Ty, then xz(t) = xe(t) and xl('t)= xl(t)
|

until the respective projections reach the point 22 simultaneously or

O. 1In the

until the trajectories simulteneously meet the plane x3

former case, after Z, is reached, we have xl(t) = il(t) =0, xe(t) =

2

}?2(1:) = = A,. Hence, in either case, xl(t) = }-cl(t) and  x,(t) = }-ce(t)

as long as %(t) = x3(t) > 0. Since x3(t) < A3 by hypothesis, we have

;3(1;) < A3 on the time interval during which x3 is initially positive.

We next wish to obtain a éimila.r result when the projection of p € K2-7T2',
In the set K2 - Tyy We have

*
h(xl, xe) +W U = h(xl, xe) +w(t) =1 = h(xl, xe) + o - 1 <0, where,
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by hypothesis, h(xl, X5

of the Eighth Progress Report, we therefore have

) is monotonic non decreasing in X5e By Theorem 1.2

il(t) s xl(t), )-cg('b) < xz(t) and %(t) s 3%(1:),

so long as (xl(t), xe(t)) and (xl(t), x2(t)) remain in K,- m, and as long
as Ej(t) > 0.

Throughout this part of the motion we therefore have §3(t) < Ay since,
by hypothesis x3(t) = A3. | |

The slope of T, 1s negative. Hence (il('t), :_cz(t)) reaches T,
before (x1 (t), xg(t)) does. let the time of impact be t_. Then
xl(to) < xl(to). So long as xl(t) < xl(t), we still have xz(t) < xe(t).
Let t, >t be the first (if there is any) time such that :‘cl(tl) = xl(tl).

Then clearly xe(tl) s x2(tl), whence (xl(tl), x2(‘bl)) lies either on

T, or above it. In the first case we have (xl(tl), x2(t1))=(xl(t1)'\”XE’(tl))‘

whence (xl(‘t), xe(t)) = (:71(*5), ’E(t)) for all t > t, for which both

trajectories are still in the half space x5 > 0. In the latter case we

note that il(tl) = h(xl(t), x2(t)) +0 -1<0 and therefore the projection
(xl('b), x2(t)) moves to the left of the line x; = il(tl). At the same time
(il(t), ig(t)) moves to the right of this line. Hence (xl(t), xe(t)) will
intersect T, (if at all) at some time t, > t, &t a point above

()'El(‘be) s ie(te)). Therefore, again, so long as both trajectories are still
in the half space Xy > 0, we have ia(t) s xe(t). Hence so long as

., we have E%Ft)égi(t) s A

As long as X,(t) > 0, the projection (x,, ¥,) proceeds in
%3 12 *2

xj('b) >0 and 553(1:_) >0

toward T, and then along T, towerd Z,. If the plane x3 = 0 has not
yet been reached, the projection is '"stopped" at Z, and iB(t) decreases

monotonically at & fixed rate i3 = - A3 toward O. Eventually,

-12-9-
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I'(t, p, w, u*) descends into the lower half space X5 < 0. From that.

point on the inequality 53(t) s x3(t) can no longer be applied for

all subsequent time., But surely I'(t, p, w, u* ) can not escape from
R5 through the wall x3
that I'(t, p, w, u*) returns to the plane x3 = 0 at some subsequent

= A3 as long as ia(t) < 0. Suppose then

point py. This can only happen if P1€Ké° But it is already known from
Lemma 1, that I'(%t, Py O u* ) does not leave R3 through the wall

Xz = Aﬁ' (The p of that Lemma is the present pl). Hence we can apply

the results obtained above for the point p to the point 2 to show

that TI(t, Pys W, u* ) can not leave R3 through the wall Xy = A3

unless it first descends below the plane x, = 0 and then emerges there

3
again at a point Py € Ké and so forth. The complete proof of Lemma 2

by induction is thus clearly indicated.

Lemma 3. Let A5g B + A Let ueU,peRS. If p e Q(u), then

r(t, p, &, u*) cannot leave By through the wall Xz = Age

o .0 .0 o _o
Proof. Iet p = (xl, X5 xx). Since p e Q(u) it follows that (xl, x2)€ Ko

Hence (x(t, p, @ u *), %,(t, p, @ u*)) €K, forall t2> O. Hence if

I(t, p, @ u*) ever reaches the plane Xz = 0, it could not (by Lemma 1)

subsequently cross the plane x3 = A3. Thus, if xg £ 0 the proof is
complete. ’We therefore restrict attention to the case when x; > 0.
Denote xi(t, p, &, u¥ ) and xi(t, P, @, u), i=1,2, 3, by
xi(t) and yi(t), respectively.
Suppose first that (xi, xg) ¢ K, - my. Then as long as both
(xl(t), xe(t)) and (yl(t), y2(t)) below to K, - n, &nd both xs(t)
and y3(t) are positive, we have

-

h(xl, x2)+oc+u_z_h (xl, x2)+a+u*=h(xl, x,) +a -1

-12-10~
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Since h is monotonic non-decreasing in Xoy We have from Theorem 1.2
of the Eighth Progress Report

x(8) S 7,(8), %(8) SW,(8), x(8) S ws(t) S A C(L2)

, *
If Xjkt) vanishes at time t  before (xl(t), x2(t)) reaches

*
”é: the proof is complete on account of the fact that I'(t, p, &, u )
reached the plane x3 = 0 so that Lemma 1 can be invoked. Otherwise
(xl(t), X, (t)) reaches T, &t some time t_, at which time, x3(to)
is still > 0.

Since T

, has & negative slope, we see from (1.2) that

(xl(t), xg(t)) reaches T, before (yl(t), yé(t)) does. Moreover

x) (.)€ (), %(8,) < wylt)
As long as xl(t) < yl(t), t >t, we still have xa(t) < ya(t).
In order for ye(t) to "catch up" and become < x2(t) the projection
(yl(t), y2(t)) must proceed to the left of the moving line x, = xl(t).
However, since p € Q(u), this projection must remain to the right of

catching up" process can therefore proceed only through the

ﬁé. This "
"wedge" indicated by shading in Figure 3. But for points (yl, yé) in -
this A
/ zz
(30, xe) _
Figure 3
-12-11-
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wedge it is geometrically obvious that ¥y 2 x2(t). Hence

x(t) S 35(8)
as long as x3(t) > 0. Hence x3(t) < Vs (t) < A3 as long as
x3(t) > 0. This completes the proof in the case when xg > 0 and
o _o

(xl, xe) € Ky - Ty

There remains the case xo >0 and (x°, x5) € 7,. Initially

*3 1’ *2 2

the two points (xl(t), xe(t)) and (yl(t), ye('t)) coincide. The former

point must, of course, move along Tos and, if the latter point also

T, 1is always governed by X, = 52(x2)' If at any time t1 the point

moves along T it must coincide with the former point, since motion ‘along |
(yl(t), y2(t)) leaves T, it can only do so by moving to the right of

. o .0 _0
T,» Since (xl, X5 }Lj) € Q(u).

Since the point (xl, x2) and (yl, ye) part company at time t = 'tl,
we see that the non-negative function

p () = [y (6) -x (1% + [yp(t) = xp(6)1°

i
is not identically zero on any interval t <t < tl

+ 8 no matter how
small the positive number & i1is. It might, however, vanich infinitely
often on such an interval. Let t" be any point on the interval

l, b+ 8) such that p (t") > 0. Since p (t) is continuous, there

(t
is an open interval (C,B) containing t" such that p (@) = 0 and such
that p(t) >0 for t e (@, p)S(tt, t1 + 8). We wish to show that it is
not possible to have xa(tl) > ye(.‘tl) at any point t)€ (o, B)e Choose
0 2 @ sothat x,(") - yy(@) = O end so that xy(t) - y,(t) >0 for
te (a, t)). Then we can find £ e (o, %) such that 5:2(1:*) 5ot )> 0. ‘

* *
But, since X and ¥, = y), this would mean that xl(t ) > yl(t )s

2~ %1
* * * *
while simultaneously (since t ¢ (o, 'bl)) we also have x2(t )>y2(t )e
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Hence the point (yl('t ), y2(t )) would lie to the left of T, , which
is impossible. Hence we must have x2 l) < y2(tl) for any t, e(a, B).
Hence, in particular, xa(t") < ya(t"). |

Since t" was any point on (tl, 1+ 8) for which p (t") > 0,

we see that xe(t) ye(t) ‘on any sufficiently small interval (t .

+ 3).
Moreover xe(t) is not identically ye(t) on any such interval, because
then we would have xl(t) = 5:2(1:) = 5{2(1;)5 yl('b), which contradicts the
assumption that (xl, x2) and (yl, y2) actually parted compény at. T,

When once we know that xe(t) <yy(t) for some t > gt (as we know now),
we may apply the argument about the wedge which was previously discussed )
at least if xl(t) < y,l(t). If, however, xl(t) z yl(t), the point
(yl s y2) is already in the wedge. In either case the argument shows that
ye(t) can never become < xe(’t). This completes the proof of Lemma 3.

The followir;g Lemmas are proved in complete analogy with Lemmas 1, 2, 3.
Lemma 4. Iet A3 z B+ ANand let peK,. Thenl (t, p, -, u.*) does not
leave R3 through the wall x3 A3 |

Lema 5. let Ay 2B+ A Let p€K2 (}1{2(&{2 IfT (%, p, <, u® ) does no‘t<
leave R3 through the wall X5 = -A3, then T (t, p, ¥, u*) does not leave

R3 through the wall x3 = -J-B. Y

Leme 6. Iet A; 2B + A Iet uel, peRy. If pe(u), then T (%, p, -0, u*)

cannot leave R3 through the wall Xy = .l-\3

-1213-
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Our main result is an almost obvious consequence of these six lemmas.

It may be stated as rollows:

Theorem Let B Dbe defined as at the top of p. 9 of the Thirteenth Progress
Report and let A be defined as on p. 10 of the same report. If A3 2 B+ A,

then u¥ (xl, Xp) x5) is an upper bound for the system

5:1 = h(xl, x2) + u(xl, Xp) x5) + w(t)
5{2 = X
5c3 = X,

in Rj' Moreover Kg.c:Q(u* ).

Proof. Let ueU and let peQ(u). Then the projection of p on the

=0 lies in K,. It now follows from Lemmas 3, 2, 6, 5 that
peQ(u* ). Hence Q(u) < Q(u* ) for all ueU. In other words u* is an

upper bound. The fact that K2C:Q(u*) follows from Lemmas. 1, 2, 4, and

5.
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During the month of March 1965 attempts were made to describe the cores of
the third order systems considered in the Thirteenth and Fourteenth Progress Report.
Since it was proved in these reports that these systems admitted upper bounds, 1t
is known that the cores exist, but we have not yet succeeded in describing them in
a simple explicit manner. On the conérary, the present status of this work is both
tentative and complicated, and.we can not report in detail upon it here.

We have also attempted to generalize the'results of the last two progress
reports by omitting the requirement on h(xl, x2) that it should be monotonic

increasing in X, for each fixed x or at least by replacing this requirement

1}
by a weaker one. In particular it was thought for a while that the Lemma 2.1% of.
the Thirteenth Progréss Report could be proved without the monotonicity requirement,
since it is not hard to see thaf it does indeed hold in many special cases when the
monotonicity requirement is violated. Although we have failed to find a satisfactory
substitute for this Lemma 2.1, the following considerations, besides indicating the

nature of part of last month's work, many yleld some insight into this problem.

Theorem 1, In the half-plane x, z 0, suppose f(xl, x2) s -p where p 1s positive.
Suppose also that feC'. Let xl(t, a), xe(t, a) satisfy the system of differential

equations

kl f(xl) x2) (l)

ia = X - (2)

and the initial conditions

xl(o, a) =a >0 v (3)

xe(o: a) 0 . (’-&)

*There were some errors in the typing of the proof of this Lemma 2.1. Line 11 on p. 11
shiould read "12(0) = xl(o) =a<al-= xi(o) = ié(o)" and line 13 of the same page

Y . ol 1l
should reead "xz(t) s x%(t) and that xl(t) = x2(t) s xa(t) = xl(t)."
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Then there exists a positive number T = T(a) such that x2(t, a) >0 for
0<t<T and such that xQ(T,a) = 0. Moreover, T, considered as a function
of & has a derivative, T'(a), given by the formule

ot t = T(a) ca t = T(a)

where

axy(t,e) <o, / (5)
3t t = T(a)

Proof. Since x,(0, &) =0 and %,(0, &) = xl(O, a) =a>0, x(t,a)
must be positive for sufficiently small positive values of t. Since

X, = f(xl, xe) s = u, we evidently have xl(t, a) £ a -ut, at least as long
as [xl(t,a), xe(t,a)] steys in the half-plane x, z O. Hence, from (2), we

find that xa(t,a) s at -(;/2)nt2 which 1s negative for sufficiently large

values of t. We let T De the first point where xz(t,a) ceases to be positive.

This proves the first statement of the theorem.

As noted above, x2(t, a) > 0 for sufficiently small positive values of t.

Because of (2), xz(t, a) continues to increase as long as x,(t, a) > 0. Hence

x,(t, &) >0 as longas 0= xl(t, a) < a. In this connection it should be remembered

that xl(t, a) is monotonic decreasing, according to (1) and the fact thet f s -y,
at least as long as [xl, x2] steys in the half plane x, 2 O. But x2(T, a) =0

by definition of T. Hence xl(T,a) can not lie on the interval [0, a). Since

T>0 and xl(t, a) is monotonic decreasing in t, we also know from (3) that

xl(T,a) can not be greater than or even equal to &. The only alternative is that

xl(T, a) < 0. From (2), we now see that (5) must hold.

-13~-2~
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Now T(a), of course, satisfies the equation

xz[T(a), al =0 (6)
Since (5) has been shown to hold, the equation (6) suffices for a local unique
determination of T(a) in accordance with the implicit function theorem. The
implicit function theorem yields the further information that T'(a) exists and
satisfies the equation written above in the statement of Theorem 1. This completes
the proof of Theorem 1.

| It is clear from Theorem 1 that the sign of T'(a) is the same as the sign of

‘ &E(t}a)
‘ 3 t = T(a)
and the sign of this latter may be referred to the variational equations of the system

(1), (2). But no useful criterion has been discovered in this way.

(1), (2), thus obtaining

) T . " (1)
dxl fixl,xai

Another way of proceeding is first to eliminate t from the autonomous system '
|
\
\

where the denominator on the right is not zero, for X5 2 0, since

£(x )s - u<o. (8)

1 %2
Equation (7) is used to define a solutim x, = y(xl, a), such that

y(a, a) = 0. This solution is defined for

-b g X, 58 - , (9)
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where b = b(a) = -xl[T(a), a] > 0 in accordance with Theorem 1, and we know
also that y[-b, a] = 0. From (1) we obviously get an explicit formula for
T(a) in terms of y(x, a), namely

T(a.) = -

a
Udx
' f[)x,, y(x,8)]

-b(a

(10)

The graphs of the two functions y(x,a) and y(x,a') can not intersect if
a ;! a'; for, if they did, the uniqueness theorem for the solutions of (7) would

be violated. It follows then that

b'(a) 2 0, gzéx, a) 20 (11)

Differentiating the integral in (10) we obtain

ey o . 1 -b'(a)
T'(2) t(a, 0) * £(-b(a), 0)
I e £0x y(x,8)]  oylx, &) 4 (12)
() oy wa)lf =

Because of (11), the last written integral is 2 0 if f[x,, x,] 1s monotonic

increasing in for each fixed x while the other two terms on the right

X2 1’
hend side of (12) are 2 O in any case because of (8) and (11). We may state
this result in the form of a theorem.

Theorem 2. T(a) is a monotonic increasing function of a if the right hand side
of (12) is always non-negative. This will automatically be the case if f(xl, x2)

is monotonic increasing in X5 for each fixed Xy
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CHAPTER 14



1. Some Final Remarks.

During the last part of the present contract a substantial amount
..of work was invested in the following two directions:

(a) A complete analysis of the cores of the third order systems
considered in the thirteenth and fourteenth Progress Reports was com-
pleted. The geometrical configuration of these cores was carefully
analyzed in detail in order to determine whether any pathological
behavior of the systems had been overlooked. This analysis was both
tedious and complicated and led to the conclusion that no pathological
behavior occurs. Apart from this fact, which does have some significance,
the exact geometrical configurations obtained by us are not of sufficient
importance to warrant the additional investment of time and effort which
would be required in order to present them here in detail. They are there-
fore omitted.

(b) Investigations designed to explore various approaches to the
solution of the minimax problem within the core were initiated. The
two main approaches attempted fell in the categories of functional
analysis and differential games, respectively. The first of these led
to negative results. The second was terminated at an early and
inconclusive stage.

During the same period the preparation and editing of the final
report was undertaken and completed.

2. Recommendations for Future Research on the Minimax Problem

I. It appears to us at the present time that further research
on the minimax problem should proceed mainly along lines suggested by
differential games.

II. Further research along lines suggested by our own approach

during the past year should also yield additional results of interest.
The following objectives of such research can be specifically formulated:
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Research Relating to Upper Bounds

1. On the existence and nature of upper bounds for
linear systems.

2. On the existence and nature of upper bounds with
respect to a subset of R.

3. (1)
(ii)
4. (i)
(ii)
(iii)

Relation between the existence of upper bounds
and the set R.

Relation between the existence of upper bounds
and the given system.

The existence and nature of upper bounds for the
controllable linear system with three zero roots
and suitable R.

The existence and nature of upper bounds for the
controllable linear system with four zero roots
and suitable R.

The existence and nature of upper bounds for the
linear system with roots 0O, 3, - and suitable
R.

5. The existence and nature of upper bounds for other
(particular systems) of interest.
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B. The Minimax Problem Inside the Core of R.

1. Re-examination of the minimax problem inside the core of R.
2. Possible new criteria for choice of control inside the core.

3. On the qualitative nature of solutionsto the general minimax
problem inside the core.

4. On the quantitative nature of solutions to the general
minimax problem.

5. Qualitative and guantitative investigation of the minimax
problem (inside the core) for the particular systems listed
in Part A.

Methods suggested by the theory of differential games should prove
useful in pursuing items 3, 4, 5 above.

ITII. It appears to us at the present time that additional research
on the minimax problem would yield various results of a mathematical
nature which would provide deeper insight into the problem. Such in-
sight may have useful engineering and/or computational implications.
However, the probability of obtaining closed form solutions to the
minimax problem for systems which are of practical relevance to the
Saturn Launch Vehicle is at best difficult to evaluate at the present
time and at worst somewhat pessimistic.
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APPENDIX

NOTES AND ERRATA

Chapter 1, Section 1:

The statement of the problem given here, in spite of its
vagueness, is sufficiently precise to have started the investigation
on a somewhat wrong track. Namely the class U was supposed to
have been a class of functions of t rather than functions of x,
or at least rather than functions of x as well as of t. It was
not until the Fourth Progress Report (i.e. Chapter 3) that this point
of view was abandoned. The following sections were written under this
assumption (that the class U was composed of functions of t alone):
Sections 5 and 6 of Chapter 1, pp. 1-21 to 1-25. Sections 1 and 2 of
Chapter 2, pp. 2-1 to 2-15. The other sections in Chapters 1 and 2,
even though they were written before the faulty assumption was aband-
oned, contain material of such generality as to be applicable to cases
where the class U contains functions of x.

Chapter 1, Section 2:

The first comma of 1. 11, p. 1-10, should be omitted.

Chapter 1, Section 3:

The K in formula (3.2) should be A
On p. 1-13, 1. 2, the word "say" should be "any".
On p. 1-17, last line, F should be G.

Chapter 1 Section 4:

On p. 1-19, second line, x-» Y should be X -Y.

On p. 1-19, line 9, "be" should be "by".




Chapter 1, Section 5:

On p. 1-21, last line, [é, {1 should be [?, %].

The title of this Section is misleading. The problem considered
is essentially a "maximin" problem rather than a "minimax" problem.
We were led to it because of the faulty assumption that U contained
functions of t only.

On p. 1-22, line 2, ucU should be u*cU.

Chapter 1, Section 6:

This section is defective in several respects and is superceded
by Chapter 2, Section 2.

Chapter 2, Section 1:

This section is still based on the assumption that the class U
of admissible controls consists of functions of time. It sets forth
a maximin problem in WxU and shows how this may be transformed into
a minimax problem in a new cross product set WxH.

P. 2-5, line 4, WxH should be WxU.

Chapter 2, Section 2:

On p. 2-9, 1. 6. "number" should be "member".
This section, although it satisfactorily corrects the errors

of Chapter 1, Section 6, is itself superceded by the more general
Sections 2 and 3 of Chapter 4, pp. 4-4 to 4-11.

Chapter 3:

Here is found the exact formulation of the minimax problem
using control functions which depend on the state-variables akone.




Chapter 5, Section 3.2:

On p. 5-17, Definition 3.1 is correct albeit awkwardly stated.
It may be simplified as follows:

Definition 3.1 Let uj, u, eU. We say that u, contains wuj,
written u,Duy iff Q(uz)DQ(ul).

Proposition 3.1 then becomes true by definition.

p. 5-21, line 12, [fA + o1 , A - 9:%] should be
T T

[fA + @-1) T, A - (a-1) %].

Chapter 5, Appendix to Section 1:

p. 5-23. Part of the proof of the Theorem on this page is
incorrect, but this material is superceded by Chapter 6, Section 1.

Chapter 6, Section 1:

p. 6-3, 1. 7. The formula in Theorem 1.1 should be numbered (1l.1).

Chapter 9, Section 2:

p.- 9-11, 1. 7. |h| should be pﬂ .

Chapter 10:

pP. 10-6. The definitions of sets X3+ and X3- are defective
in that the conditions X, =%, = 0 are missing. The definitians
of Pl and P, are defective in that the condition Xq = 0 is missing.

p. 10-8, line 3, "below plane" should read "below the plane".

p. 10-12, 11. 14, 15, 16, the g in. formulas p(t, g, a, u*)
and x5 (t, g, o, u*) should be replaced by gq.

p. 10-12, line 17. The first nine words and 7w should be
omitted.

p. 10-14, last line, (x, (t), x,(t)) should read (x)(t), x,(t)).
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p. 10-15, 11. 19 and 20. The sentence, “But (xl(t), xz(t)) has
the least possible value throughout this wedge", should read as
follows: "But for points (yl, yz) in this wedge it is geometrically
obvious that y,2> x,".

Chapter 11, Section 1l:

p. 11-5, 1. 1le. wz(t) should be replaced by w2(t-tl).

Chapter 11, Section 2:

p. 11.9, 1. 17. O0; should be oO.

p. 11.11, 1. 11. xz(o) should be xl(o),

Chapter 11, Section 3:

p. 11-15, line 4 from bottom, "caome" should read "come".

p. 11-16, line 5, X1, (t, p, o, u*) should read xl(t, p.a, u*).




